String Searches

Thomas Schwarz, SJ

Problem

* \We are given a long string (text)
* such as a book or a genome
 We are given a short string (pattern)

 We want to find where the shorter string is located in the
longer one

Nalve Algorithm

We slide the pattern successively through the text
We compare the letters in the pattern with the text
If two letters differ, go to the next location

If we reach the end, we have found a match

Nalve Algorithm

e Example

IMAJL]L]S[R[TJAJATEJE[V]IJA]S[F]TIEJEJQ]JAJV]L]AJL]TIN]JV]E]IK]D]K

AT L[L][A]S]F]T]E

* No match on first character: move pattern by one

MALL-RTAAEEVIASFTEEQAVLALTNVEKDK

A[LTLCPATS[F[T[E

e After sliding, three letters coincide, but then we have a
mismatch: move pattern by one

Nalve Algorithm

e Example:

MIABBIL[S[R][TJAJAJEJE[V]I]A]S]F]TIEJEJQ[AJV]L]AJL]T]N

PATL[L]A]S]F]T]E

e No match on first, slide

MIATLEEIS[R]TJAJAJEJE[V]IJA]S]F]TIE][E][Q[A]VIL]AJL]TIN

AT L[L]AJS]F]T]E

e No match on first, slide

Nalve Algorithm

e \What are the costs:

At best, we compare each letter of the text with a letter
in the pattern

e n:length of pattern
e m: length of string
e Besttime: O(n)

e Worst time: ®(nm)

Nalve Algorithm

 Average time:

* Depends on how likely matches between letters are

e |f we assume there are ¢ characters and all are equally
likely and the appearance of a character is independent
of its neighbors and ... :

e Probability of a character matchingis 1/c

 Expected number of characters compared is

c—1 c—1 c—1 1
. 11 D4+ cm—1)+— -m

Nalve Algorithm

 Average time:

c— 1 | c—1). c—1 (1 1
P ¢ I ¢ e o o I ¢ m - I ¢ m
| C
. Converges quickly to
c— 1
' // m=100

Nalve Algorithm

e Thus:

 Average number of comparisons is close to 1

Boyer Moore Algorithm

e How can we do better?
* Need to be able to slide the pattern further
e But for this we need to foresee the text

 That is why it is better to compare the pattern and the
text from the right

Boyer Moore Algorithm

e Example:

MIAJL]L][SIRI[TIATATEJE[V]I]A]S]FITIEJEJQIAJV]L]AJL]TIN]JV]E[K]D]K

A[L]LJATS]F]TE]

e Compare pattern from the right

e The 'A' in the text can at best be matched by the
rightmost 'A' in the pattern

MIAJL]L][SIRI[TIMIATEJE[V]I]A]S]FITIEJEJQIAJV]L]AJL]TIN]JV]E[K]D]K

A[LILIAs[F[T[E]

Boyer Moore Algorithm

MIAJL]L]S[RITEMATEJE]JV]IJA]IS]F[TIEJE]JQJA]V]L]AJL][TIN]V]EJK]D]K

A[LILEAIS[F]TE]

e So we slide four to the right

MIAJL]L]S[RITEMATEJE]V]IJA]IS]FITIEJE]JQJA]V]L]AJL][TIN]V]EJK]D]K

A[LILPAS]F[T]E

* And then compare at the new location

MIAJL]L][S|IR][TIAJATE[EN I [A]JS]FITIEJEJQJAJV]L]AJL]TIN]JV]E[K]D]K

A[LIL]A]S[F[T[E]

Boyer Moore Algorithm

MIAJL]L][S|[R][TIAJATE[EN I [A]JS]FITIEJEJQJAJV]L]AJL]TIN]JV]E[K]D]K

A[LIL]A]S[F[T[E]

e The 'V' does not appear in the string at all

e So we can slide by the length of the pattern

MIAJL]L][S]IR][TJAJATE[EN I [A]JS]FIT]EJEJQJAIV]L]AJL]TIN]JV]E[K]D]K

AIL|L|A|S|F|TI|E

Boyer Moore Algorithm

* Jo implement the "bad character” at the end, we need to
process the string

e Shift is the smallest distance of the bad character to
the end in the pattern or the length of the pattern

AILILIAIS|F|T]|E

H W e
L w O N O D

Boyer Moore Algorithm

e We can use this also if we find a bad character after j
successful comparisons

LSRTAAEALLAS.TEEQAVLALTNVEKDKALLASFTEQA

AILIL]ATSIEITIE

 We can shift by 5-3

* In general: table[char]-|

H W e
W O N O D

Boyer Moore Algorithm

* This is not the only knowledge that we can use

* Assume we have already matched part of the pattern,
but now have a disagreement

 This means that we know a part of the text

SRTAAEALLAS.TEEQAVLALTNVEKDKALLASFTEQA

AILJL]ATSIEITIE

e Where can 'ATE' be matched in the pattern?

e Answer: not at all

Boyer Moore Algorithm

* We preprocess the pattern

e For each letter we find the minimum distance to the
end

e For each suffix, we find the minimum distance of
another copy of the suffix to the end

e Or: If the alphabet is small:

* Where can the suffix preceded by a single letter be
found

Boyer Moore Algorithm

e Example:
e pattern: 011001001

e match "1": where can "11" be found: distance 6

e match "01" where can "101" be found:
e 011001001: shift 7

e match "001": where is "0001":
e 011001001: shift 7

e match "01001": where is "101001" :

* 011001001: shift 7

Boyer Moore Algorithm

 Both rules give usually different safe shift amounts

 Always use the larger one

Boyer Moore Algorithm

e Example

[of*JoJofofo+]+]+ 1o +]+ o 1]+]of+ [1JoJo[[t 1]4]*Jofo o 4]+]1]1 o1]ofo o [1]oJoJo o o 1]+]o o o oo 1 1]4]ofs 1 1]4]of 1 1 1]o]+]1]1 o o o o]

[of+[+T+ ofol+[+]x 11TofoTo [+ 1]+

e Bad letter: shift 1
e Good suffix "": shift 1

Boyer Moore Algorithm

e Example:

0
1] 1]0]

e Bad character: shift 1

11.00111110001111010001000001100000111

Boyer Moore Algorithm

e Example

o(ojoyof{t1t{ty1{t1jof1r{t1joytr{1jot{1p4yo(of1yt+(1{1{t1fo0jojoy1j{t1{1y1fo0j1jo0fojo0|1fo0j0|0f0j0O|1(140

011100111110001111.

e Compare:

01110011111000.1110

 Bad character rule: shift by one

e Good suffix rule: shift by 14

Boyer Moore Algorithm

e Example

oO|1{0jo0(0{O0O|1(1T|1|1[{0|1{T]0O1|1 t(1y1({o0jo(1{1y1(1j1(0jo0ojo0f1j1(1{11]0

oyj1(1|110j0|1{1{1(1{1j0{0|0(1{1}]1(1]0

e After shift, we find a match

* Then we shift by one

Boyer Moore Algorithm

e Your turn:
 Preprocess "AGGTAA"
e Bad character table

e Bad suffix table

Boyer Moore

* Analysis is very difficult
 Worst case:

e Pattern and text consists of a single letter

e ~ 71 comparisons
e Best case:

e Pattern and text have completely different letters

n
« |— | comparisons
m

Boyer Moore

* Analysis is very difficult
e Speed-up usually substantial

e Called a "sub-linear" algorithm

Variants:

 Only the bad character rule:
 Boyer-Moore-Horspool:
 Only bad character rule
* Apostolico-Giancarlo

e Uses the pattern preprocessing in order to not
compare letters that are known to be good

* |nstead of a single bad character:

e Use pairs of characters

Evaluation

e Algorithm comparison depends on the model
 Experimental evaluation:
 Define and find "typical scenarios”

 Use statistics to compare results

