Final Solutions

- (1) The ϵ transition allows us to go from the start state to B. Thus, 01 is accepted (going from A to B to C to B), but 00 is not, as the only way to process the initial 0 is to go from B to C and then we are stuck.
- (2) We assume that the invariant is true before the loop starts. If x is even, then the product $x\cdot y$ does not change and neither does total, so the invariant still holds. If x is odd, then we can write it as $x = 2 \cdot z + 1$. Before the loop, we have $x \cdot y +$ total $= a \cdot b$. When we are done with the loop, we have $x \leftarrow z$, $y \leftarrow 2 \cdot y$, total $=$ total+ y . In terms of the new values, we need to look at $x\cdot y+$ total, which in terms of the old values is $z\cdot 2\cdot y+$ total+ y which simplifies to $(z \cdot 2 \cdot y + y)$ +total = $(2z + 1) \cdot y$ +total = $x \cdot y$ +total and is therefore the same value. The algorithm stops if $x = = 0$, in which case total $=a\cdot b.$
- (3) The new algorithm has recurrence $T(n) = 23T(n/5) + c$ with asymptotic run-time $\Theta(n^{\log_5(23)})$. Because $\log_5(23) > \log_2(3)$, there is no gain over the original.
- (4) Write $n = 3m + 2$. For the m groups of threes, we use three comparisons each for a total of $3m$ and for the small group we use one comparison in order to obtain the minima and maxima of all groups. So far, we have used $3m+1$ comparisons. To obtain the maxima among the $m + 1$ group maxima, we use m comparisons and the same for the minima. This step gives an additional $2m$ comparisons. All together, we have $5m+1$ comparisons. For the naïve algorithm, we have $2(n-1) = 2(3m + 2 - 1) = 6m + 3$ comparisons, which is more.
- (5) $50 = 32 + 18 = 2^5 + 18$. Therefore, the split pointer is 18 and the level is 5.
- (6) We number the elements in the set as $x_1, x_2, ..., x_n$. Let $f(r, t)$ be the closest we can get to *t* using the first r elements, i.e. the elements in $x_1, x_2, ..., x_r$. Then

 $f(r + 1,t) = \min(f(r, t), f(r, t - x_{r+1}))$.

- (7) We number the elements in the sequence as $x_1, x_2, ..., x_n$. We again consider the sequence of sequences up to the r -th element. For each r , we maintain **two** sequences: The longest strictly increasing sequence in $x_1, x_2, ..., x_r$ and the longest strictly increasing sequence that ends in x_r . When we increment r , we update the two sequences depending on whether x_r is larger than x_{r-1} or not.
- (8) The waypoint matrix tells us that we need to go via Vertex 2. This breaks the problem into getting to 2 and then getting from 2 to 4. For the first one, we get waypoint 1, for the second, we get waypoint 4, meaning going directly from 2 to 4. In total, we get $0 \rightarrow 1 \rightarrow 2$ \Rightarrow 4.
- (9) We copy the table and annotate it:

This means we include J, G, E, and D.

10. We first join A and F to have a super-symbol AF with frequency 13%. Then we join AF with C to get (AF)C with frequency 25%. Then we join DE for a combined frequency of 35%. We then join (AF)C and DE and afterwards with B.

A possible encoding is $A - 0000$, $B - 1$, $C - 001$, $D - 010$, $E - 011$, $F - 0001$.

- 11. $\delta(s, v) \leq \delta(s, u) + w$.
- 12. In this case, v is an ancestor of u so that there is a path from v to u . The edge from u to v finishes a cycle.
- 13. Four nodes have degree 3 and therefore the graph is not Eulerian.
- 14. We have had to start out in A, and then discover B. We just finished B and the next step is to select the edge with smallest provisional distance from A, namely C.
- 15. Since no algorithm exists, *a fortiori* no poly-time algorithm exists for the halting problem.
- 16. Problem A is in NP. Assume any other problem in NP and assume that I can solve Problem A in poly-time. Then by assumption, I can solve Circuit-Satisfiability in poly-time. If I can solve Circuit-Satisfiability, then I can that other problem in poly-time. This means, Problem A is NP-complete.
- 17. There are c possibilities to color one edge. As there are e edges, there are c^e possible coloring. Any algorithm that does a proportion of this complete enumeration (as we have to assume back-tracking will do for most graphs) is not polynomial time. The problem is however in $\mathcal{N} \mathcal{P}$ because checking a coloring can be done by looking at all the edges in all adjacency lists. We will look at ν vertices and at each edge twice (because each edge appears in two adjacency lists) for a total of $\Theta(\nu) + \Theta(e)$ runtime.
- 18. A Hamiltonian path combines all ν vertices, and therefore has to encompass $\nu 1$ edges. If the number of edges is less than that, then no Hamiltonian path can exist.
- 19. See table below. On average, we shift by 2.25 characters if all characters in the text are equally likely to occur at any given position.

