## **Final Solutions**

- (1) The  $\epsilon$  transition allows us to go from the start state to B. Thus, 01 is accepted (going from A to B to C to B), but 00 is not, as the only way to process the initial 0 is to go from B to C and then we are stuck.
- (2) We assume that the invariant is true before the loop starts. If x is even, then the product x ⋅ y does not change and neither does total, so the invariant still holds. If x is odd, then we can write it as x = 2 ⋅ z + 1. Before the loop, we have x ⋅ y+total = a ⋅ b. When we are done with the loop, we have x ← z, y ← 2 ⋅ y, total = total+y. In terms of the new values, we need to look at x ⋅ y+total, which in terms of the old values is z ⋅ 2 ⋅ y+total+y which simplifies to (z ⋅ 2 ⋅ y + y)+total = (2z + 1) ⋅ y+total = x ⋅ y+total and is therefore the same value. The algorithm stops if x = 0, in which case total = a ⋅ b.
- (3) The new algorithm has recurrence T(n) = 23T(n/5) + c with asymptotic run-time  $\Theta(n^{\log_5(23)})$ . Because  $\log_5(23) > \log_2(3)$ , there is no gain over the original.
- (4) Write n = 3m + 2. For the *m* groups of threes, we use three comparisons each for a total of 3m and for the small group we use one comparison in order to obtain the minima and maxima of all groups. So far, we have used 3m + 1 comparisons. To obtain the maxima among the m + 1 group maxima, we use *m* comparisons and the same for the minima. This step gives an additional 2m comparisons. All together, we have 5m + 1 comparisons. For the naïve algorithm, we have 2(n 1) = 2(3m + 2 1) = 6m + 3 comparisons, which is more.
- (5)  $50 = 32 + 18 = 2^5 + 18$ . Therefore, the split pointer is 18 and the level is 5.
- (6) We number the elements in the set as  $x_1, x_2, ..., x_n$ . Let f(r, t) be the closest we can get to t using the first r elements, i.e. the elements in  $x_1, x_2, ..., x_r$ . Then  $f(r + 1, t) = \min(f(r, t), f(r, t x_{r+1}))$ .
- (7) We number the elements in the sequence as x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>. We again consider the sequence of sequences up to the *r*-th element. For each *r*, we maintain **two** sequences: The longest strictly increasing sequence in x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>r</sub> and the longest strictly increasing sequence that ends in x<sub>r</sub>. When we increment *r*, we update the two sequences depending on whether x<sub>r</sub> is larger than x<sub>r-1</sub> or not.
- (8) The waypoint matrix tells us that we need to go via Vertex 2. This breaks the problem into getting to 2 and then getting from 2 to 4. For the first one, we get waypoint 1, for the second, we get waypoint 4, meaning going directly from 2 to 4. In total, we get 0 -> 1 -> 2 -> 4.
- (9) We copy the table and annotate it:

|    |   |   | А | В | С  | D  | Ε  | F  | G  | Η  | I  | J  |
|----|---|---|---|---|----|----|----|----|----|----|----|----|
| 0  | : | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1  | : | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 2  | : | 0 | 4 | 4 | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| 3  | : | 0 | 4 | 5 | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  |
| 4  | : | 0 | 4 | 5 | 6  | 9  | 9  | 9  | 9  | 9  | 9  | 9  |
| 5  | : | 0 | 4 | 9 | 10 | 10 | 13 | 13 | 13 | 13 | 13 | 13 |
| 6  | : | 0 | 4 | 9 | 11 | 13 | 13 | 16 | 16 | 16 | 16 | 16 |
| 7  | : | 0 | 4 | 9 | 11 | 15 | 17 | 17 | 19 | 19 | 19 | 19 |
| 8  | : | 0 | 4 | 9 | 15 | 15 | 19 | 20 | 20 | 20 | 21 | 21 |
| 9  | : | 0 | 4 | 9 | 15 | 19 | 22 | 22 | 23 | 23 | 23 | 25 |
| 10 | : | 0 | 4 | 9 | 15 | 20 | 23 | 25 | 25 | 25 | 25 | 25 |
| 11 | : | 0 | 4 | 9 | 15 | 20 | 26 | 29 | 29 | 29 | 29 | 29 |
| 12 | : | 0 | 4 | 9 | 15 | 24 | 28 | 29 | 32 | 32 | 32 | 32 |
| 13 | : | 0 | 4 | 9 | 15 | 24 | 28 | 33 | 35 | 35 | 35 | 35 |
| 14 | : | 0 | 4 | 9 | 15 | 24 | 32 | 35 | 36 | 36 | 37 | 38 |
| 15 | : | 0 | 4 | 9 | 15 | 24 | 33 | 38 | 39 | 39 | 40 | 41 |
| 16 | : | 0 | 4 | 9 | 15 | 24 | 33 | 39 | 41 | 41 | 41 | 44 |
| 17 | : | 0 | 4 | 9 | 15 | 24 | 37 | 42 | 44 | 44 | 44 | 46 |
| 18 | : | 0 | 4 | 9 | 15 | 24 | 37 | 44 | 48 | 48 | 48 | 48 |
| 19 | : | 0 | 4 | 9 | 15 | 24 | 37 | 44 | 48 | 49 | 50 | 50 |
| 20 | : | 0 | 4 | 9 | 15 | 24 | 37 | 48 | 52 | 52 | 53 | 54 |
| 21 | : | 0 | 4 | 9 | 15 | 24 | 37 | 49 | 54 | 55 | 56 | 57 |
| 22 | : | 0 | 4 | 9 | 15 | 24 | 37 | 49 | 57 | 57 | 57 | 60 |
| 23 | : | 0 | 4 | 9 | 15 | 24 | 37 | 53 | 58 | 59 | 60 | 62 |
| 24 | : | 0 | 4 | 9 | 15 | 24 | 37 | 53 | 61 | 61 | 62 | 65 |
| 25 | : | 0 | 4 | 9 | 15 | 24 | 37 | 53 | 63 | 64 | 65 | 66 |

This means we include J, G, E, and D.

10. We first join A and F to have a super-symbol AF with frequency 13%. Then we join AF with C to get (AF)C with frequency 25%. Then we join DE for a combined frequency of 35%. We then join (AF)C and DE and afterwards with B.



A possible encoding is A - 0000, B -1, C - 001, D - 010, E - 011, F - 0001.

- 11.  $\delta(s, v) \le \delta(s, u) + w$ .
- 12. In this case, v is an ancestor of u so that there is a path from v to u. The edge from u to v finishes a cycle.
- 13. Four nodes have degree 3 and therefore the graph is not Eulerian.
- 14. We have had to start out in A, and then discover B. We just finished B and the next step is to select the edge with smallest provisional distance from A, namely C.
- 15. Since no algorithm exists, a fortiori no poly-time algorithm exists for the halting problem.
- 16. Problem A is in NP. Assume any other problem in NP and assume that I can solve Problem A in poly-time. Then by assumption, I can solve Circuit-Satisfiability in poly-time. If I can solve Circuit-Satisfiability, then I can that other problem in poly-time. This means, Problem A is NP-complete.
- 17. There are *c* possibilities to color one edge. As there are *e* edges, there are  $c^e$  possible coloring. Any algorithm that does a proportion of this complete enumeration (as we have to assume back-tracking will do for most graphs) is not polynomial time. The problem is however in  $\mathcal{NP}$  because checking a coloring can be done by looking at all the edges in all

adjacency lists. We will look at v vertices and at each edge twice (because each edge

appears in two adjacency lists) for a total of  $\Theta(v) + \Theta(e)$  runtime.

- 18. A Hamiltonian path combines all v vertices, and therefore has to encompass v 1 edges. If the number of edges is less than that, then no Hamiltonian path can exist.
- 19. See table below. On average, we shift by 2.25 characters if all characters in the text are equally likely to occur at any given position.

| bad character | Shift             |
|---------------|-------------------|
| "Т"           | matches, continue |
| "A"           | 2                 |
| "C"           | 1                 |
| "G"           | 6                 |