
Algorithms: Programming Assignment —
Regular Expressions Home-Made
Finite State Machines are easiest implemented in languages that allow the goto complex. The
pattern is

State_A: try:
 switch(get_input()):
 case “0”: goto State_B
 case “1”: goto State_A
 except inputError: #there is no more string to process
 return “Not accepted”
State_B: try:
 switch(get_input()):
 case “0”: goto State_A
 case “1”: goto State_B
 except inputError: #there is no more string to process
 return “Accepted”

in order to implement the following simple DFA:

In languages without the goto (or languages that make the use of the goto difficult), we can
maintain the set of states in which the machine can currently be. If we process a character
from the input string, we go through all states in the set and calculate the set of states that can
result from them. This is especially easy if we avoid machines with � moves, but NFA are not
more difficult to implement.

Create a program that reads in a file with only 0 and 1 characters. You can easily create such a
file with the random module in Python. Your program has to decide whether the binary number
corresponding to the file has remainder 1 modulo 3. You have to implement this with a DFA.
Of course, the file is so large that casting it into an integer will be difficult even for Python, so
do not do that.

ϵ

A BStart 0

1 1

0

