## Worksheet 1

Create a DFA from the following NFA. The starting state is A.



Step 1: Create the transition function  $\delta$  of the finite automaton. We create a table where we start with a set consisting only of the initial state. The first line gives the set of states reachable by A processing either a "0" or a "1". On a "0", we can transition from A to B or to C, giving us  $\delta(\{A\}, 0) = \{B, C\}$ .

| δ   | 0 1    |     |  |
|-----|--------|-----|--|
| {A} | {B, C} | {D} |  |
|     |        |     |  |
|     |        |     |  |

We then create two more rows for the new states {B, C} and {D} of the DFA. To calculate  $\delta(\{B, C\}, 0)$ , we look at possible transitions from B. There are two, leading to states D and A. In C, there is only one, namely a transition to A. Therefore,  $\delta(\{B, C\}, 0) = \{A, D\}$ . To calculate  $\delta(\{B, C\}, 1)$ , we see that there is no transition from B on 1, but there is a transition from C to A on 1. This gives us  $\delta(\{B, C\}) = \{A\}$ . We do the same to calculate the third row.

| δ      | 0 1    |     |
|--------|--------|-----|
| {A}    | {B, C} | {D} |
| {B, C} | {A, D} | {A} |
| {D}    | {A}    | {B} |

We now see that we have new states {A,D} and {B}. We add them to the table.

| δ      | 0      | 1     |
|--------|--------|-------|
| {A}    | {B, C} | {D}   |
| {B, C} | {A, D} | {A}   |
| {D}    | {A}    | {B}   |
| {A,D}  | {B, C} | {B,D} |
| {B}    | {A, D} | {}    |
| {B,D}  |        |       |
| {}     |        |       |

This gives us two more possible states for the DFA. We also add them to the table and calculate.

| δ      | 0      | 1     |
|--------|--------|-------|
| {A}    | {B, C} | {D}   |
| {B, C} | {A, D} | {A}   |
| {D}    | {A}    | {B}   |
| {A,D}  | {B, C} | {B,D} |
| {B}    | {A, D} | {}    |
| {B,D}  | {A, D} | {B}   |
| {}     | {}     | { }   |

Since no more states are being generated, we can now generate the transition diagram.



The final / accepting states are the ones that contain the one and only accepting state of the NFA, namely D. We put this into the transition diagram and are done.



Task 1: Convert the NFA below into a DFA.



Task 2: Convert the NFA below into a DFA



Solution for first task:

