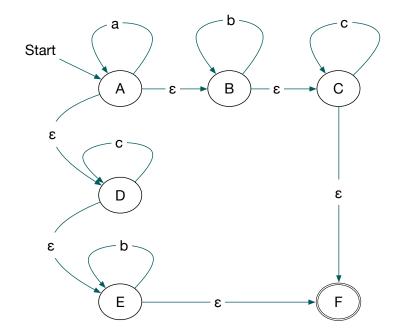
Worksheet — January 16, 2018

NFA with ɛ-transition

We use the following NFA with ε -transitions over the alphabet $\{a, b, c\}$.



- 1. Show that the strings "aaabbbcc", "aaaaaccbbbb", and "aaacc" are accepted by this automaton.
- 2. Argue that the string "bbbaa" is not accepted by the automaton.
- 3. Find the set of all states that can be obtained by starting in A by either processing "a", "b", or "c".
- Calculate an equivalent DFA. Create a table whose rows are labelled by set of states obtained by calculating transitions and whose columns are labelled by the alphabet {a, b, c}. Calculate the states that are accessible from a state in the set by processing the character.
- 5. Draw the corresponding DFA.

Regular Expressions:

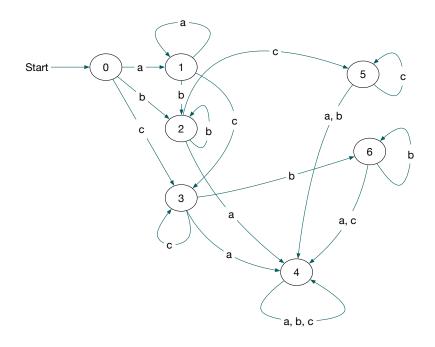
Decide whether the following strings are elements in the set defined by the regular expression $(001 + 100)^* + 0^*1$.

- 1. 001100
- **2**. ε
- 3. 00001

- 4. 100000
 5. 0001100
- 6. Create the DFA that corresponds to this regular expression.

Solutions – NFA

	а	b	c
{A} = 0	$\{A,B,C,D,E,F\}=1$	${B,C,E,F} = 2$	$\{C, D, E, F\} = 3$
$\{A,B,C,D,E,F\}=1$	$\{A,B,C,D,E,F\}=1$	${B,C,E,F} = 2$	$\{C,D,E,F\}=3$
$\{B,C,E,F\}=2$	{ } = 4	${B,C,E,F} = 2$	${C,F} = 5$
$\{C,D,E,F\}=3$	{ } = 4	{E,F} =6	$\{C,D,E,F\}=3$
{C,F} =5	{ } = 4	{ } = 4	{C, F} = 5
{E, F} = 6	{ } = 4	${E, F} = 6$	{ } = 4
{ } = 4	{ } = 4	{ } = 4	{ } = 4



Solutions - Regular Expressions

- 1. 001100 = 001 \cdot 100 is part of the Kleene closure of $(001 + 100)^*$.
- 2. ϵ is also part of the Kleene closure of $(001 + 100)^*$.
- 3. 00001 is part of the Kleene closure of 0*1.
- 4. 100000 cannot be part of the Kleene closure of 0*1 because the string does not end with
 1. If it is part of the Kleene closure of (001 + 100)*, then the string needs to consist of the concatenation of strings of length 3, which is possible since it has length 6. But then
 000 ∈ (100 + 001)*, which cannot be because the string does not have a character 1 and the elements in the set all have one. Therefore, this string is not part of (001 + 100)* + 0*1.
- 5. 0001100 has length 7 and cannot therefore be in $(100 + 001)^*$. It cannot be in 0^*1 because the string has two characters 1.

