
Greedy Algorithms
Algorithms

Greedy Algorithms
• Many algorithms run from stage to stage

• At each stage, they make a decision based on the
information available

• A Greedy algorithm makes decisions

• At each stage, using locally available information, the
greedy algorithm makes an optimal choice

• Sometimes, greedy algorithms give an overall optimal solution

• Sometimes, greedy algorithms will not result in an optimal
solution but often in one good enough

Divisible Items Knapsack
Problem

• Given a set of items

• Each item has a weight

• Each item has a value

• Select a subset

• Constraint:

• Objective Function:

S

M ⊂ S

∑
x∈M

w(x) < W

w(x)
v(x)

∑
x∈M

v(x) ⟶ max

Divisible Items Knapsack
Problem

• Order all items by impact

•

• In order of impact (highest first), ask whether you want to
include the item

• And you include it if the sum of the weights of the items
already selected is smaller than

impact(x) =
v(x)
w(x)

W

Optimal Rental
• Set of activities

• Each activity has a start time and a finish time

•

• Each activity needs to use your facility

• Only one activity at a time

• Make the rental agreements that maximize the number
of rentals

S = {a1, a2, …, an}

0 ≤ si < fi < ∞

Optimal Rental
• Two activities and are compatible iff

•

• This means that activity finishes before activity

ai aj

[si, fi) ∩ [sj, fj) = ∅

i < j j

Optimal Rental
• Example:

• A compatible set is

• Another compatible set is

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

fi 6 7 9 12 13 15 18 19 20 21

{A1, A5, A8, A10}
{A3, A9}

Optimal Rental
• Optimal rental with a dynamic programming algorithm

• Subproblems: Define to be the set of activities that
start after finishes and finish before startsai

Sik
ak

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

fi 6 7 9 12 13 15 18 19 20 21

S1,8 = {a5}

Optimal Rental
• We want to find an optimal rental plan for

• Assume that there is an optimal solution that contains
activity

• By selecting , we need to decide what to do with the
time before starts and after finishes

• These sets are and

Sik

aj ∈ Si,k

aj
aj aj

Sij Sjk

Optimal Rental
• Assume that is part of an optimal solution for

• Then is divided into the ones that end before and
the ones that start after

•

Ai,kaj Si,k

Ai,k aj
aj

Ai,j = Ai,k ∩ Si,k Aj,k = Ai,k ∩ Sj,k

Ai,k = Ai,j ∪ {aj} ∪ Aj,k

Optimal Rental

ai ak

Si,k

aj

Si,j Sj,k

Aij Ajk

Sij Sjk

Optimal Rental
• Clearly, is an optimal solution for

• is an optimal solution for

• For if not, we could construct a better solution for

ai ak

Si,k

aj

Si,j Sj,k

Aij Ajk

Sij Sjk

Ai,j Si,j

Aj,k Sj,k

Si,k

Optimal Rental
• We can therefore solve recursively the problem for by

looking at all possible activities for

• Define Max number of compatible activities
in

• Then:

• The 0 is necessary because there might be no
activity in

Si,k
aj

C[i, k] =
Si,k

C[i, k] = max(0, max (C[i, j] + C[j, k] + 1 |aj ∈ Si,k))

Si,k

Optimal Rental
• The recursion leads to a nice dynamic programming

problem

C[i, k] = max(0, max (C[i, j] + C[j, k] + 1 |aj ∈ Si,k))

Optimal Rental
• But can we do better?

Optimal Rental
• Start out with the initial problem

• Select the activity that finishes first

• this would be

• This leaves most space for all other activities

• Call the set of activities compatible with

• These are those starting after

• Similarly, call the set of activities starting after

a1

S1 a1

a1

Sk
ak

Optimal Rental
• Theorem: For any non-empty problem let be

the activity with the smallest end time. Then is
contained in an optimal solution

• Proof:

• Let be a solution

• i.e. the maximum sized compatible subset in

• Let be the activity with earliest finish time

• If then we are done

Sk am
am

Ak

Sk

a1 ∈ Ak

am = a1

Optimal Rental
• Theorem: For any non-empty problem let be

the activity with the smallest end time. Then is
contained in an optimal solution

• Proof:

• Otherwise replace with in

•

• Since is the first to finish, this is a set of
compatible activities

• Therefore, there exists an optimal solution with

Sk am
am

a1 am Ak

A′�k = Ak − {a1} ∪ {am}
am

am

Optimal Rental
• Result of the Theorem:

• We can find an optimal solution (but not necessarily
all optimal solutions) by always picking the first one
to finish.

Optimal Rental
• Example

• Select

• Exclude , , and as incompatible

• Choose , , and for the complete solution

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

fi 6 7 9 12 13 15 18 19 20 21

a1

a2 a3 a4

a5 a8 a10

Greedy Algorithms
• Greedy algorithms

• Determine the optimal substructure

• Develop a recursive solution

• Show that making the greedy choice is best

• Show that making the greedy choice leads to a similar
subproblem

• Obtain a recursive algorithm

• Convert the recursive algorithm to an iterative algorithm

Coin Change Problem
• How to make change for a given amount using minimum number

of coins with denominations

• Some sets of coins allow a greedy solution

• Always choose biggest coin smaller than amount

•

•

• Others are not regular, i.e. the greedy solution is not always
best

•

• Why is this not regular?

{1,a2, a3, …, an}

{1,5,10,20,50}

{1,5,10,50,100,200,1000}

{1,6,7}

12 = 7 + 1 + 1 + 1 + 1 + 1 = 6 + 6

Coin Change Problem
• Dynamic Programming approach

• Common subproblem structure?

Coin Change Problem
• Let be an optimal way to

make change with coins.

• Then this is also an optimal way to make change for

• Proof?

x1 + x2a2 + x3a3 + … + xnan = M
x1 + x2 + x3 + … + xn

y1 + y2a2 + y3a3 + … + ynan = N, y1 ≤ x1, y2 ≤ y2, …, yn ≤ xn

N

Coin Change Problem
• Because of the common sub-problem property, we can

use dynamic programming

• Easiest organized by limiting the number of coins

• Let the values of the coins be

• For all amounts let be the minimum
number of coins using denominations

1 = a1 < a2 < a3 < … < an

m ≤ M dk(m)
a1, a2, …, ak

Coin Change Problem
• What is the recursive formula?

Coin Change Problem

dk(m) = min{dk−1(m − ak) + 1,dk−1(m − 2ak) + 2,dk−1(m − 3ak) + 3,…dk−1(m − ⌊
m
ak

⌋ak) + ⌊
m
ak

⌋}

Coin Change Problem
• Solve the coin problem for and amount 25{1,6,7}

