
Greedy Algorithms
Algorithms



Greedy Algorithms
• Many algorithms run from stage to stage


• At each stage, they make a decision based on the 
information available


• A Greedy algorithm makes decisions 


• At each stage, using locally available information, the 
greedy algorithm makes an optimal choice


• Sometimes, greedy algorithms give an overall optimal solution


• Sometimes, greedy algorithms will not result in an optimal 
solution but often in one good enough



Divisible Items Knapsack 
Problem

• Given a set of items  


• Each item has a weight  


• Each item has a value  


• Select a subset


• Constraint:


• Objective Function:      

S

M ⊂ S

∑
x∈M

w(x) < W

w(x)
v(x)

∑
x∈M

v(x) ⟶ max



Divisible Items Knapsack 
Problem

• Order all items by impact


•  


• In order of impact (highest first), ask whether you want to 
include the item


• And you include it if the sum of the weights of the items 
already selected is smaller than 

impact(x) =
v(x)
w(x)

W



Optimal Rental
• Set of activities   


• Each activity has a start time and a finish time


•  


• Each activity needs to use your facility


• Only one activity at a time


• Make the rental agreements that maximize the number 
of rentals 

S = {a1, a2, …, an}

0 ≤ si < fi < ∞



Optimal Rental
• Two activities      and      are compatible iff


•    


• This means that activity            finishes before activity   

ai aj

[si, fi) ∩ [sj, fj) = ∅

i < j j



Optimal Rental
• Example:


• A compatible set is


• Another compatible set is  

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

fi 6 7 9 12 13 15 18 19 20 21

{A1, A5, A8, A10}
{A3, A9}



Optimal Rental
• Optimal rental with a dynamic programming algorithm


• Subproblems:  Define        to be the set of activities that 
start after       finishes and finish before      startsai

Sik
ak

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

fi 6 7 9 12 13 15 18 19 20 21

S1,8 = {a5}



Optimal Rental
• We want to find an optimal rental plan for  


• Assume that there is an optimal solution that contains 
activity


• By selecting     , we need to decide what to do with the 
time before       starts and after       finishes


• These sets are        and  

Sik

aj ∈ Si,k

aj
aj aj

Sij Sjk



Optimal Rental
• Assume that        is part of an optimal solution        for


• Then       is divided into the ones that end before     and 
the ones that start after


•    

Ai,kaj Si,k

Ai,k aj
aj

Ai,j = Ai,k ∩ Si,k Aj,k = Ai,k ∩ Sj,k

Ai,k = Ai,j ∪ {aj} ∪ Aj,k



Optimal Rental

ai ak

Si,k

aj

Si,j Sj,k

Aij Ajk

Sij Sjk



Optimal Rental
• Clearly,        is an optimal solution for 


•       is an optimal solution for


• For if not, we could construct a better solution for 

ai ak

Si,k

aj

Si,j Sj,k

Aij Ajk

Sij Sjk

Ai,j Si,j

Aj,k Sj,k

Si,k



Optimal Rental
• We can therefore solve recursively the problem for         by 

looking at all possible activities for


• Define                   Max number of compatible activities 
in


• Then:


• The 0 is necessary because there might be no 
activity in  

Si,k
aj

C[i, k] =
Si,k

C[i, k] = max(0, max (C[i, j] + C[ j, k] + 1 |aj ∈ Si,k))

Si,k



Optimal Rental
• The recursion leads to a nice dynamic programming 

problem

C[i, k] = max(0, max (C[i, j] + C[ j, k] + 1 |aj ∈ Si,k))



Optimal Rental
• But can we do better?



Optimal Rental
• Start out with the initial problem


• Select the activity that finishes first


• this would be 


• This leaves most space for all other activities


• Call            the set of activities compatible with


• These are those starting after 


• Similarly, call          the set of activities starting after  

a1

S1 a1

a1

Sk
ak



Optimal Rental
• Theorem:  For any non-empty problem        let          be 

the activity with the smallest end time.   Then         is 
contained in an optimal solution   


• Proof:  


• Let           be a solution


• i.e. the maximum sized compatible subset in


• Let                  be the activity with earliest finish time


• If                    then we are done

Sk am
am

Ak

Sk

a1 ∈ Ak

am = a1



Optimal Rental
• Theorem:  For any non-empty problem        let          be 

the activity with the smallest end time.   Then         is 
contained in an optimal solution   


• Proof:  


• Otherwise replace         with          in     


•   


• Since         is the first to finish, this is a set of 
compatible activities


• Therefore, there exists an optimal solution with  

Sk am
am

a1 am Ak

A′�k = Ak − {a1} ∪ {am}
am

am



Optimal Rental
• Result of the Theorem:


• We can find an optimal solution (but not necessarily 
all optimal solutions) by always picking the first one 
to finish.



Optimal Rental
• Example


• Select     


• Exclude       ,     , and       as incompatible


• Choose       ,       ,  and         for the complete solution

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

fi 6 7 9 12 13 15 18 19 20 21

a1

a2 a3 a4

a5 a8 a10



Greedy Algorithms
• Greedy algorithms


• Determine the optimal substructure


• Develop a recursive solution


• Show that making the greedy choice is best


• Show that making the greedy choice leads to a similar 
subproblem


• Obtain a recursive algorithm


• Convert the recursive algorithm to an iterative algorithm 



Coin Change Problem
• How to make change for a given amount using minimum number 

of coins with denominations


• Some sets of coins allow a greedy solution


• Always choose biggest coin smaller than amount


•   


•  


• Others are not regular, i.e. the greedy solution is not always 
best


•  


• Why is this not regular?

{1,a2, a3, …, an}

{1,5,10,20,50}

{1,5,10,50,100,200,1000}

{1,6,7}

12 = 7 + 1 + 1 + 1 + 1 + 1 = 6 + 6



Coin Change Problem
• Dynamic Programming approach


• Common subproblem structure?



Coin Change Problem
• Let                                                     be an optimal way to 

make change with                                   coins.


• Then this is also an optimal way to make change for    


• Proof?

x1 + x2a2 + x3a3 + … + xnan = M
x1 + x2 + x3 + … + xn

y1 + y2a2 + y3a3 + … + ynan = N, y1 ≤ x1, y2 ≤ y2, …, yn ≤ xn

N



Coin Change Problem
• Because of the common sub-problem property, we can 

use dynamic programming


• Easiest organized by limiting the number of coins


• Let the values of the coins be


• For all amounts                let             be the minimum 
number of coins using denominations      

1 = a1 < a2 < a3 < … < an

m ≤ M dk(m)
a1, a2, …, ak



Coin Change Problem
• What is the recursive formula?



Coin Change Problem

dk(m) = min{dk−1(m − ak) + 1,dk−1(m − 2ak) + 2,dk−1(m − 3ak) + 3,…dk−1(m − ⌊
m
ak

⌋ak) + ⌊
m
ak

⌋}



Coin Change Problem
• Solve the coin problem for              and amount 25{1,6,7}


