Greedy Algorithms

Algorithms

Greedy Algorithms

- Many algorithms run from stage to stage
 - At each stage, they make a decision based on the information available
- A Greedy algorithm makes decisions
 - At each stage, using locally available information, the greedy algorithm makes an optimal choice

- Sometimes, greedy algorithms give an overall optimal solution
- Sometimes, greedy algorithms will not result in an optimal solution but often in one good enough

Divisible Items Knapsack Problem

- Given a set of items S
 - Each item has a weight w(x)
 - Each item has a value v(x)
- Select a subset $M \subset S$
 - Constraint:

$$\sum_{x \in M} w(x) < W$$

• Objective Function:

$$\sum_{x \in M} v(x) \longrightarrow \max$$

Divisible Items Knapsack Problem

- Order all items by impact
 - impact(x) = $\frac{v(x)}{w(x)}$
- In order of impact (highest first), ask whether you want to include the item
 - And you include it if the sum of the weights of the items already selected is smaller than ${\cal W}$

- Set of activities $S = \{a_1, a_2, ..., a_n\}$
 - Each activity has a start time and a finish time
 - $0 \le s_i < f_i < \infty$
 - Each activity needs to use your facility
 - Only one activity at a time
 - Make the rental agreements that maximize the number of rentals

- Two activities a_i and a_j are compatible iff
 - $[s_i, f_i) \cap [s_j, f_j) = \emptyset$

• This means that activity i < j finishes before activity j

• Example:

i	1	2	3	4	5	6	7	8	9	10
si	1	3	0	2	6	5	6	15	18	19
fi	6	7	9	12	13	15	18	19	20	21

- A compatible set is $\{A_1, A_5, A_8, A_{10}\}$
- Another compatible set is $\{A_3, A_9\}$

- Optimal rental with a dynamic programming algorithm
 - Subproblems: Define S_{ik} to be the set of activities that start after a_i finishes and finish before a_k starts

i	1	2	3	4	5	6	7	8	9	10
si	1	3	0	2	6	5	6	15	18	19
fi	6	7	9	12	13	15	18	19	20	21

$$S_{1,8} = \{a_5\}$$

- We want to find an optimal rental plan for S_{ik}
 - Assume that there is an optimal solution that contains activity $a_j \in S_{i,k}$
 - By selecting a_j , we need to decide what to do with the time before a_i starts and after a_j finishes
 - These sets are S_{ij} and S_{jk}

- Assume that a_j is part of an optimal solution $A_{i,k}$ for $S_{i,k}$
 - Then $A_{i,k}$ is divided into the ones that end before a_j and the ones that start after a_j

•
$$A_{i,j} = A_{i,k} \cap S_{i,k}$$
 $A_{j,k} = A_{i,k} \cap S_{j,k}$

$$A_{i,k} = A_{i,j} \cup \{a_j\} \cup A_{j,k}$$

- Clearly, $A_{i,j}$ is an optimal solution for $S_{i,j}$
- $A_{j,k}$ is an optimal solution for $S_{j,k}$
- For if not, we could construct a better solution for $S_{i,k}$

- We can therefore solve recursively the problem for $S_{i,k}$ by looking at all possible activities for a_i
 - Define C[i, k] = Max number of compatible activities in $S_{i,k}$
 - Then:

 $C[i,k] = \max(0, \max(C[i,j] + C[j,k] + 1 | a_j \in S_{i,k}))$

• The 0 is necessary because there might be no activity in $S_{i,k}$

The recursion leads to a nice dynamic programming problem

$$C[i,k] = \max(0, \max(C[i,j] + C[j,k] + 1 | a_j \in S_{i,k}))$$

• But can we do better?

- Start out with the initial problem
 - Select the activity that finishes first
 - this would be a_1
 - This leaves most space for all other activities
 - Call S_1 the set of activities compatible with a_1
 - These are those starting after a_1
 - Similarly, call S_k the set of activities starting after

• Theorem: For any non-empty problem S_k let a_m be the activity with the smallest end time. Then a_m is contained in an optimal solution

- Proof:
 - Let A_k be a solution
 - i.e. the maximum sized compatible subset in S_k
 - Let $a_1 \in A_k$ be the activity with earliest finish time
 - If $a_m = a_1$ then we are done

• Theorem: For any non-empty problem S_k let a_m be the activity with the smallest end time. Then a_m is contained in an optimal solution

- Proof:
 - Otherwise replace a_1 with a_m in A_k

•
$$A'_k = A_k - \{a_1\} \cup \{a_m\}$$

- Since a_m is the first to finish, this is a set of compatible activities
- Therefore, there exists an optimal solution with a_m

- Result of the Theorem:
 - We can find an optimal solution (but not necessarily all optimal solutions) by always picking the first one to finish.

• Example

i	1	2	3	4	5	6	7	8	9	10
si	1	3	0	2	6	5	6	15	18	19
fi	6	7	9	12	13	15	18	19	20	21

- Select a_1
- Exclude a_2 , a_3 , and a_4 as incompatible
- Choose a_5 , a_8 , and a_{10} for the complete solution

Greedy Algorithms

- Greedy algorithms
 - Determine the optimal substructure
 - Develop a recursive solution
 - Show that making the greedy choice is best
 - Show that making the greedy choice leads to a similar subproblem
 - Obtain a recursive algorithm
 - Convert the recursive algorithm to an iterative algorithm

- How to make change for a given amount using minimum number of coins with denominations $\{1, a_2, a_3, ..., a_n\}$
 - Some sets of coins allow a greedy solution
 - Always choose biggest coin smaller than amount
 - {1,5,10,20,50}
 - {1,5,10,50,100,200,1000}
 - Others are not regular, i.e. the greedy solution is not always best
 - {1,6,7}
 - Why is this not regular?

12 = 7 + 1 + 1 + 1 + 1 + 1 = 6 + 6

- Dynamic Programming approach
 - Common subproblem structure?

- Let $x_1 + x_2a_2 + x_3a_3 + \dots + x_na_n = M$ be an optimal way to make change with $x_1 + x_2 + x_3 + \dots + x_n$ coins.
- Then this is also an optimal way to make change for N

 $y_1 + y_2a_2 + y_3a_3 + \dots + y_na_n = N, \quad y_1 \le x_1, y_2 \le y_2, \dots, y_n \le x_n$

• Proof?

- Because of the common sub-problem property, we can use dynamic programming
- Easiest organized by limiting the number of coins
 - Let the values of the coins be

 $1 = a_1 < a_2 < a_3 < \dots < a_n$

• For all amounts $m \leq M$ let $d_k(m)$ be the minimum number of coins using denominations $a_1, a_2, ..., a_k$

• What is the recursive formula?

 $d_k(m) = \min\{d_{k-1}(m - a_k) + 1, d_{k-1}(m - 2a_k) + 2, d_{k-1}(m - 3a_k) + 3, \dots, d_{k-1}(m - \lfloor\frac{m}{a_k}\rfloor a_k) + \lfloor\frac{m}{a_k}\rfloor\}$

• Solve the coin problem for {1,6,7} and amount 25