
Worksheet Complexity 

We use Landau and Knuth’s notation to compare the growth of natural numbers. 


1. Big O notation 

The definition of the big O notation looks almost like the definition of the limit.  


� .


While �  means that �  grows slower than � , this is not to be understood literally.  
Also, it is important to note the function of the �  in the definition.  We are talking about 
comparing eventual growth.  What happens for small arguments does not matter to the 
notation. 


Problem 1:  Is � ? You can answer this directly using the definition. 


Problem 2: Is � ? You can answer this directly using the definition.


Often however, we can decide membership using limits. 


Problem 3: Assume we have a function 


� .


We want to show that � . The easiest way to do this is use limits. Since 


� 


and


 � ,


we can use the definition of the limit to conclude that 


� .


We pick �  and dissolve the absolute value signs in order to obtain


f (n) ∈ O(g(n)) ⇔ ∃n0 ∈ ℕ∃c > 0∀n > n0 : 0 < f (n) < cg(n)

f ∈ O(g(n)) f g
n0

10n + log n ∈ O(n)

n2 + 5 ∈ O(n)

f (n) = {3n2 + 5n + 12 if n is odd
n2 + 1 if n is even

f (n) ∈ O(n2)

lim
n→∞

3n2 + 5n + 12
n2

= lim
n→∞

3 +
5
n

+
12
n2

= 3

lim
n→∞

n2 + 1
n2

= lim
n→∞

1 +
1
n2

= 1

∀ϵ > 0∃n0 ∈ ℕ∀n > n0 : |
3n2 + 5n + 12

n2
− 3 | < ϵ

ϵ = 1



� .


Adding 3 gives us


� .


and multiplying with �  yields


� 


A forteriori, the left inequality shows that � , but that is 
already clear from the fact that we are adding up positive integers. We treat the other limit 
equally and get from its definition first


� ,


and then 


� .


Again, we pick �  in order to deduce that


� ,


� ,


and 


� .


We have now two useful inequalities that we can apply to � . The last remaining trick is to pick a 
new constant by setting � .  Since of course � , we can replace �  with 
�  without changing the validity of inequality (2) and similarly in inequality (3). Since 
� , we now conclude


∃n0 ∈ ℕ∀n > n0 : − 1 <
3n2 + 5n + 12

n2
− 3 < 1

∃n0 ∈ ℕ∀n > n0 : 2 <
3n2 + 5n + 12

n2
< 4

n2

(2) ∃n0 ∈ ℕ∀n > n0 : 2n2 < 3n2 + 5n + 12 < 4n2 .

∃n0 ∀n > n0 : 0 < 3n2 + 5n + 12

∀ϵ > 0∃n1 ∈ ℕ∀n > n1 : |
n2 + 1

n2
− 1 | < ϵ

∀ϵ > 0∃n1 ∈ ℕ∀n > n1 : − ϵ <
n2 + 1

n2
− 1 < ϵ

ϵ = 1

∃n1 ∈ ℕ∀n > n1 : − 1 <
n2 + 1

n2
− 1 < 1

∃n1 ∈ ℕ∀n > n1 : 0 <
n2 + 1

n2
< 2

(3) ∃n1 ∈ ℕ∀n > n1 : 0 < n2 + 1 < 2n2

f
n2 = max(n0, n1) n0 ≤ n2 n0

n2

∀n ∈ ℕ : 4n2 > 2n2



� .


This fulfills the definition of Landau’s O-symbol with �  and concludes the proof. 


Problem 4:  � .


(If no base is given, then this is the natural logarithm.  Since logarithms of different basis differ 
by a multiplicative constant, the same type of arguments hold for other than the natural 
(unnatural ?) logarithms such the binary logarithm frequently encountered in Computer 
Science.)  


The trick is to calculate the limit of the quotient of the two functions involved. Both quotients 
can be used. First, we have 


� ,


where we use L’Hôpital’s rule.  Strictly speaking, the first equality follows from the fact that the 
second limit exists. The definition of the limit then gives us


� .


Again, we pick a suitable value for �  by setting � .  Thus it follows


�  


and of course the expression is positive as the quotient of two positive numbers. Therefore


� ,


and the condition for Landau’s O is fulfilled with constant � 


Problem 5:  � . 

We get 


�  


∃n2 ∈ ℕ ∀n > n2 : 0 < f (n) < 4n2

c = 4

log n ∈ O(n0.1)

lim
n→∞

log n
n0.01

= lim
n→∞

1
n

0.01 ⋅ n−0.99
= lim

n→∞
100

1
n0.01

= 0

∀ϵ > 0 ∃n0 ∈ ℕ ∀n > n0 : |
log n
n0.01

| < ϵ

ϵ ϵ = 1

∃n0 ∈ ℕ ∀n > n0 :
log n
n0.01

< 1

∃n0 ∈ ℕ ∀n > n0 : log n < n0.01

c = 1.

n2 ∈ O(2n)

lim
n→∞

n2

2n
= lim

n→∞

2n
log 2 ⋅ n2

= lim
n→∞

2
log 2 ⋅ log 2 ⋅ n2

= 0



by applying L’Hôpital’s rule twice. The definition of the limit gives


� .


We pick again �  and have 


� .


The first inequality is silly since the quotient of two positive values is positive, but the second 
one is needed. After multiplying with � , we get


� .


This fulfills the definition of Landau’s O with constant � 


Problem 6:  �  

In this case, trying to use L’Hôpital’s rule directly is not going to work. However simple algebra 
will do the trick: 


� .


We proceed indirectly. If  � , then  


 � 


But then 


� .


This implies however that 


� .


∀ϵ > 0 ∃n0 ∈ ℕ ∀n > n0 : |
n2

2n
| < ϵ

ϵ = 1

∃n0 ∈ ℕ ∀n > n0 : − 1 <
n2

2n
< 1

2n

∃n0 ∈ ℕ ∀n > n0 : 0 < n2 < 2n

c = 1.

3n ∉ O(2n) .

lim
n→∞

2n

3n
= lim

n→∞
(

2
3

)n = 0

3n ∈ O(2n)

∃c > 0 ∃n0 ∈ ℕ ∀n > n0 : 0 < 3n < c2n .

∃c > 0 ∃n0 ∈ ℕ ∀n > n0 :
1
c

<
2n

3n

lim
n→∞

2n

3n
>

1
c



Since �  is still a positive number, this contradicts the limit.  Therefore, our assumption that 

�  is false and the alternative, namely �  is true. 


2. Landau’s little o  

Landau also invented a notion for really smaller growth, namely the little-o notation.  We say for 
positive functions  �   :


Definition:  � 


This is stronger than the Landau O, but usually easier to prove. 


Proposition:   � 


To show this proposition, we just use the definition of the limit.  The hypothesis then gives


�  


and after setting �  and recalling that both functions are positive, we get 


�  


and this gives 


� .


Since the functions are positive, we have therefore � .


Landau’s little o notation allows us quickly to establish a hierarchy of functions.  


Problem 6:  � . 

Problem 7:  � . 

Problem 8:  � .


Problem 9:  � .


1
c

3n ∈ O(2n) 3n ∉ O(2n)

f, g : ℕ → ℝ+

f (n) ∈ o(g(n)) ⇔ lim
n→∞

f (n)
g(n)

= 0.

f (n) ∈ o(g(n)) ⇒ f (n) ∈ O(g(n))

∀ϵ > 0 ∃n0 ∈ ℕ ∀n > n0 |
f (n)
g(n)

| < ϵ

ϵ = 1

∃n0 ∈ ℕ ∀n > n0 :
f (n)
g(n)

< 1

∃n0 ∈ ℕ ∀n > n0 : f (n) < g(n)

f (n) ∈ O(g(n))

log n ∈ o(n)

n ∈ o(n log n)

n log n ∈ o(n2)

b > a ⇒ na ∈ o(nb)



As you can see, the proposition is very useful in determining Landau big O relationship. 


Knuth’s Θ Notation


Often, the Landau’s big O is used to convey the idea of equal growth between functions. 
Technically, this should be Knuth’s Theta notation.  We have to call it Knuth’s because there is 
another �  that is being used in algebraic number theory. 


We say that for two positive functions, � , that  �  if and only if 

� .  We can give an equivalent characterization by the 
condition


�  


Problem 10: Show that  �  is false. 


Since we already know that � , which implies that � , we need to 
show that � If we assume that �  is true, then we would have


� .


This would of course implicate (by division with � ) that 


� .


However, since � , we have � , which 

contradicts plainly the previous statement. Thus,  �  is false. 


Θ

f, g : ℕ → ℝ+ f (n) ∈ Θ(g(n))
f (n) ∈ O( f (n)) and g(n) ∈ O( f (n))

∃c1 > 0,c2 > 0 ∃no ∈ ℕ ∀n > n0c1g(n) < f (n) < c2g(n)

n = Θ(n log n)

n ∈ o(n log n) n ∈ O(n log n)
n log n ∉ O(n) . n log n ∈ O(n)

∃c0 > 0 ∃n0 ∈ ℕ ∀n > n0 : n log n < c0n

n

∃c0 > 0 ∃n0 ∈ ℕ ∀n > n0 : log n < c0

lim
n→∞

log n = ∞ ∀c0 > 0 ∃n0 ∈ ℕ ∀n > n0 : log(n) > c0

n = Θ(n log n)


