Selected Worksheet answers

1. Since $\log n < n$ for $n \ge 1$, we have $10n + \log n \le 11n$. The definition is fulfilled with $n_0 = 1$ and c = 11.

2. If there were an $n_0 \in \mathbb{N}$ and a c > 0 such that (1) $\forall n > n_0 : 0 < n^2 + 5 < cn$, then $\forall n > n_0 : n + 5/n < c$. If we pick $m = \max(n_0 + 1, \lceil c \rceil + 1)$, then $m > n_0$ and m + 5/m > m > c, and so $m^2 + 5 > cm$. However, this is in contradiction to (1).

9. $\lim_{n \to \infty} \frac{n^a}{n^b} = \lim_{n \to \infty} n^{a-b} = 0$, since a - b < 0.