
Divide and Conquer
Algorithms



Divide and Conquer
• Generic recipe for many solutions:


• Divide the problem into two or more smaller instances 
of the same problem


• Conquer the smaller instances using recursion (or a 
base case)


• Combine the answers to solve the original problem



Integer Multiplication
• Assume we want to multiply two n-bit integers with n a 

power of two


• Divide:  break the integers into two n/2-bit integers

xL xR

yL yR

x = 2n
2 xL + xR

y = 2n
2yL + yR



Integer Multiplication
• Conquer: Solve the problem of multiplying of n/2 bit 

integers by recursion or a base case for n=1, n=2, or 
n=4

xL xR

yL yR

x = 2n
2 xL + xR

y = 2n
2yL + yR

xL ⋅ yL xL ⋅ yR xR ⋅ yL xR ⋅ yR



Integer Multiplication
• Now combine:


• In the naïve way:

x ⋅ y = (xL ⋅ 2n
2 + xR) ⋅ (yL ⋅ 2n

2 + yR)

= xL ⋅ yL ⋅ 2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n
2 + xR ⋅ yR



Integer Multiplication

• We count the number of multiplications


• Multiplying by powers of 2 is just shifting, so they do 
not count


•           number of bit multiplications for integers with     
bits:


• Recursion:    

x ⋅ y = (xL2n
2 + xR) ⋅ (yL2n

2 + yR)

= xL ⋅ yL2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n
2 + xR ⋅ yR

2nT(n)

T(0) = 1
T(n + 1) = 4T(n)



Integer Multiplication
• Solving the recursion


• Intuition:  

T(0) = 1
T(n + 1) = 4T(n)

T(n) = 4T(n − 1) = 42T(n − 2) = 43T(n − 3) = … = 4nT(0) = 4n



Integer Multiplication
• Proposition:  


• Proof by induction:


• Induction base:


• Induction step:  Assume                   . Show 


• Proof:  

T(n) = 4n

T(0) = 1 = 40

T(n) = 4n−1 T(n + 1) = 4n

T (n) = 4T (n� 1) Recursion Equation

= 4⇥ 4n�1 Induction Assumption

= 4n
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Integer Multiplication
• Since the number of bits is 


• Number of multiplications is


• This is not better than normal multiplication 

m = 2n

S(m) = T(n) = 4n = (2n)n = m2



Integer Multiplication
• Now combine:


• Instead:


• Use


• This reuses two multiplications that are already used   

x ⋅ y = (xL2n
2 + xR) ⋅ (yL2n

2 + yR)
= xL ⋅ yL ⋅ 2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n

2 + xR ⋅ yR

(xL ⋅ yR + xR ⋅ yL) = (xL + xR) ⋅ (yL + yR) − xL ⋅ yL − xR ⋅ yR



Integer Multiplication
• We need to deal with the potential overflow in calculating

(xL + xR) ⋅ (yL + yR)



Integer Multiplication
• Now, we only do three multiplications of      bit numbers in 

order to multiply two          bit numbers


• The recursion becomes 

2n

2n+1

T(0) = 1 T(n + 1) = 3T(n)



Integer Multiplication
• Solving the recurrence


• Heuristics: 

T(0) = 1 T(n + 1) = 3T(n)

T(n) = 3T(n − 1) = 32T(n − 2) = … = 3nT(0) = 3n



Integer Multiplication
• As before prove exactly using induction



Integer Multiplication
• The multiplication of two                 -bit numbers takes m = 2n

S(m) = T (n)

= 3n

= 3log2(m)

= exp(log(3log2(m)))

= exp(log2 m log 3)

= exp(logm log 3
1

log2
)

= exp(log(mlog2 3)

= mlog2 3
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Integer Multiplication
• This way, multiplication of m-bit numbers takes                 

bit multiplications
m1.58496



Integer Multiplication
• Can be used for arbitrary length integer multiplication


• Base case is 32 or 64 bits 


• But can still do better using Fast Fourier Transformation



Binary Search
• Given an array of ordered integers, a pointer to the 

beginning and to the end of a portion of the array, decide 
whether an element is in the slice


•  Search(array, beg, end, element) 

beg
end

array



Binary Search
• Divide:  Determine the middle element. This divides the 

array into two subsets


• Conquer:  Compare the element with the middle element. 
If it is smaller, find out whether the element is in the left 
half, otherwise, whether the element is in the right half


• Combine:  Just return the answer to the one question



Binary Search
def binary_search(array, beg, end, key): 
    if beg >= end: 
        return False 
    mid = (beg+end)//2 
    if array[mid]==key: 
        return True 
    elif array[mid] > key: 
        return binary_search(array, beg, mid, key) 
    else: 
        return binary_search(array, mid+1, end, key) 

test = [2, 3, 5, 6, 12, 15, 17, 19, 21, 23, 27, 29,  
        31, 33, 35, 39, 41] 
print(binary_search(test, 0, len(test), 21)) 
print(binary_search(test, 0, len(test), 22)) 



Binary Search
• Let         be the runtime of binary_search on a subarray 

with n elements


• Recursion: There is a constant c such that 

T(n)

T(1) ≤ c
T(n) ≤ T(n//2) + c



Binary Search
• Solving the recursion


• If                       then 

T (n)  T (n//2) + c

 T (n//4) + 2c

. . .

 T (n//2m) +mc
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m ≥ log2 n T(n) ≤ T(1) + mc = (m + 1)c



Binary Search
• With other words, binary search on n elements takes time 

∝ log2(n)


