
Divide and Conquer
Algorithms

Divide and Conquer
• Generic recipe for many solutions:

• Divide the problem into two or more smaller instances
of the same problem

• Conquer the smaller instances using recursion (or a
base case)

• Combine the answers to solve the original problem

Integer Multiplication
• Assume we want to multiply two n-bit integers with n a

power of two

• Divide: break the integers into two n/2-bit integers

xL xR

yL yR

x = 2n
2 xL + xR

y = 2n
2yL + yR

Integer Multiplication
• Conquer: Solve the problem of multiplying of n/2 bit

integers by recursion or a base case for n=1, n=2, or
n=4

xL xR

yL yR

x = 2n
2 xL + xR

y = 2n
2yL + yR

xL ⋅ yL xL ⋅ yR xR ⋅ yL xR ⋅ yR

Integer Multiplication
• Now combine:

• In the naïve way:

x ⋅ y = (xL ⋅ 2n
2 + xR) ⋅ (yL ⋅ 2n

2 + yR)

= xL ⋅ yL ⋅ 2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n
2 + xR ⋅ yR

Integer Multiplication

• We count the number of multiplications

• Multiplying by powers of 2 is just shifting, so they do
not count

• number of bit multiplications for integers with
bits:

• Recursion:

x ⋅ y = (xL2n
2 + xR) ⋅ (yL2n

2 + yR)

= xL ⋅ yL2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n
2 + xR ⋅ yR

2nT(n)

T(0) = 1
T(n + 1) = 4T(n)

Integer Multiplication
• Solving the recursion

• Intuition:

T(0) = 1
T(n + 1) = 4T(n)

T(n) = 4T(n − 1) = 42T(n − 2) = 43T(n − 3) = … = 4nT(0) = 4n

Integer Multiplication
• Proposition:

• Proof by induction:

• Induction base:

• Induction step: Assume . Show

• Proof:

T(n) = 4n

T(0) = 1 = 40

T(n) = 4n−1 T(n + 1) = 4n

T (n) = 4T (n� 1) Recursion Equation

= 4⇥ 4n�1 Induction Assumption

= 4n
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Integer Multiplication
• Since the number of bits is

• Number of multiplications is

• This is not better than normal multiplication

m = 2n

S(m) = T(n) = 4n = (2n)n = m2

Integer Multiplication
• Now combine:

• Instead:

• Use

• This reuses two multiplications that are already used

x ⋅ y = (xL2n
2 + xR) ⋅ (yL2n

2 + yR)
= xL ⋅ yL ⋅ 2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n

2 + xR ⋅ yR

(xL ⋅ yR + xR ⋅ yL) = (xL + xR) ⋅ (yL + yR) − xL ⋅ yL − xR ⋅ yR

Integer Multiplication
• We need to deal with the potential overflow in calculating

(xL + xR) ⋅ (yL + yR)

Integer Multiplication
• Now, we only do three multiplications of bit numbers in

order to multiply two bit numbers

• The recursion becomes

2n

2n+1

T(0) = 1 T(n + 1) = 3T(n)

Integer Multiplication
• Solving the recurrence

• Heuristics:

T(0) = 1 T(n + 1) = 3T(n)

T(n) = 3T(n − 1) = 32T(n − 2) = … = 3nT(0) = 3n

Integer Multiplication
• As before prove exactly using induction

Integer Multiplication
• The multiplication of two -bit numbers takes m = 2n

S(m) = T (n)

= 3n

= 3log2(m)

= exp(log(3log2(m)))

= exp(log2 m log 3)

= exp(logm log 3
1

log2
)

= exp(log(mlog2 3)

= mlog2 3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Integer Multiplication
• This way, multiplication of m-bit numbers takes

bit multiplications
m1.58496

Integer Multiplication
• Can be used for arbitrary length integer multiplication

• Base case is 32 or 64 bits

• But can still do better using Fast Fourier Transformation

Binary Search
• Given an array of ordered integers, a pointer to the

beginning and to the end of a portion of the array, decide
whether an element is in the slice

• Search(array, beg, end, element)

beg
end

array

Binary Search
• Divide: Determine the middle element. This divides the

array into two subsets

• Conquer: Compare the element with the middle element.
If it is smaller, find out whether the element is in the left
half, otherwise, whether the element is in the right half

• Combine: Just return the answer to the one question

Binary Search
def binary_search(array, beg, end, key):
 if beg >= end:
 return False
 mid = (beg+end)//2
 if array[mid]==key:
 return True
 elif array[mid] > key:
 return binary_search(array, beg, mid, key)
 else:
 return binary_search(array, mid+1, end, key)

test = [2, 3, 5, 6, 12, 15, 17, 19, 21, 23, 27, 29,
 31, 33, 35, 39, 41]
print(binary_search(test, 0, len(test), 21))
print(binary_search(test, 0, len(test), 22))

Binary Search
• Let be the runtime of binary_search on a subarray

with n elements

• Recursion: There is a constant c such that

T(n)

T(1) ≤ c
T(n) ≤ T(n//2) + c

Binary Search
• Solving the recursion

• If then

T (n)  T (n//2) + c

 T (n//4) + 2c

. . .

 T (n//2m) +mc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

m ≥ log2 n T(n) ≤ T(1) + mc = (m + 1)c

Binary Search
• With other words, binary search on n elements takes time

∝ log2(n)

