
Decorators in Python

Need to measure timing of
algorithms

• Measure execution time

• Wall-clock timing:

• Import a clock or time module

• Save current time

• Execute function

• Save current time

• Difference between saved times is the duration

Need to measure timing of
algorithms

• We measure the implementation of an algorithm

• Wall-clock times are inaccurate:

• System is doing other things

• Measuring introduces additional overhead

Need to measure timing of
algorithms

import time

for i in range(1,25):
 print(i)
 for j in range(20):
 start_time = time.perf_counter()
 for _ in range(50):
 x = fibonacci(i)
 duration = (time.perf_counter() - start_time)/50
 print("{:12.10f}".format(duration))
 print("\n")

Decorators
• Python uses decorators to allow changing functions

• A decorator is implemented by:

• Creating a function of a function that returns the
amended function

Decorators

def timeit(function):
 def clocked(*args):
 start_time = time.perf_counter()
 result = function(*args)
 duration = (time.perf_counter() - start_time)
 name = function.__name__
 arg_string = ', '.join(repr(arg) for arg in args)
 print('Function {} with arguments {} ran
 in {} seconds'.format(
 name, arg_string, duration))
 return result
 return clocked

Decorators

• Decorator takes a function with positional arguments as
function

• Decorator defines a new version of the argument function

• And returns it.

Decorators

def timeit(function):
 def clocked(*args):
 start_time = time.perf_counter()
 result = function(*args)
 duration = (time.perf_counter() - start_time)
 name = function.__name__
 arg_string = ', '.join(repr(arg) for arg in args)
 print('Function {} with arguments {} ran
 in {} seconds'.format(
 name, arg_string, duration))
 return result
 return clocked

Decorators

• To use a decorator, just put its name on top of the
function definition

• Decorator generator is executed when module is
imported (or generator is defined)

• When decorated function is defined, the modified
version is created

Decorators

@timeit
def fibonacci(n):
 if n == 0:
 return 0
 if n == 1:
 return 1
 else:
 return fibonacci(n-1)+fibonacci(n-2)

Decorators
• If we execute this function, we get to see how often

fibonacci is called on arguments already executed
>>> fibonacci(10)
Function fibonacci with arguments 1 ran in 5.140000070014139e-07 seconds
Function fibonacci with arguments 0 ran in 1.0870000011209413e-06 seconds
Function fibonacci with arguments 2 ran in 0.1692790839999958 seconds
Function fibonacci with arguments 1 ran in 1.2330000060956081e-06 seconds
Function fibonacci with arguments 3 ran in 0.2676633440000131 seconds
Function fibonacci with arguments 1 ran in 9.8000001003129e-07 seconds
Function fibonacci with arguments 0 ran in 1.0470000120221812e-06 seconds
Function fibonacci with arguments 2 ran in 0.09880945999999824 seconds
Function fibonacci with arguments 4 ran in 0.4692909440000079 seconds
Function fibonacci with arguments 1 ran in 6.51999997103303e-07 seconds
Function fibonacci with arguments 0 ran in 1.0500000087176886e-06 seconds
Function fibonacci with arguments 2 ran in 0.11281222700000626 seconds
Function fibonacci with arguments 1 ran in 1.958000012791672e-06 seconds
Function fibonacci with arguments 3 ran in 0.21685028000000273 seconds
Function fibonacci with arguments 5 ran in 0.7868284680000102 seconds
Function fibonacci with arguments 1 ran in 5.6999999742402e-07 seconds
Function fibonacci with arguments 0 ran in 1.0729999928571488e-06 seconds
Function fibonacci with arguments 2 ran in 0.11366798399998856 seconds
Function fibonacci with arguments 1 ran in 1.2930000110600304e-06 seconds
Function fibonacci with arguments 3 ran in 0.2176230820000029 seconds
Function fibonacci with arguments 1 ran in 5.839999914769578e-07 seconds

Memoization

• Recursion becomes very inefficient if repeated function
calls are made

• Can use a built in decorator in order to cache recently
calculated values.

• Uses Least Recently Used (LRU) policy

Memoization

@functools.lru_cache(maxsize = 100)
#@memoize
def fibonacci(n):
 if n == 0:
 return 0
 if n == 1:
 return 1
 else:
 return fibonacci(n-1)+fibonacci(n-2)

Memoization

• If you use both decorators, you can see the difference
between recalculation and accessing a cached value

Memoization

• We can also build our own decorator to store already
calculated function values in a dictionary

• Works, because the dictionary is not garbage collected

• This simple version works for single argument
functions

def memoize(function):
 values = {}
 def memoized(arg):
 if arg in values:
 return values[arg]
 else:
 result = function(arg)
 values[arg] = result
 return result
 return memoized

Memoization

• The dictionary can become too large, but otherwise, this
is a very simple way to speed up recursion that revisits
arguments.

Memoization

• Avoiding recursion is often quite a bit faster

@timeit
def fib2(n):
 small = 0
 large = 1
 for _ in range(n-1):
 small, large = large, small+large
 return large

Memoization

• You could even use an array to store already calculated
values

@timeit
def fib3(n):
 fibs = [0, 1]
 for i in range(2, n+1):
 fibs.append(fibs[-1]+fibs[-2])
 return fibs[-1]

