Decorators in Python



Need to measure timing of
algorithms

e Measure execution time
e Wall-clock timing:
e Import a clock or time module
e Save current time
e EXxecute function
e Save current time

o Difference between saved times is the duration



Need to measure timing of
algorithms

* We measure the implementation of an algorithm

e Wall-clock times are inaccurate:
e System is doing other things

e Measuring introduces additional overhead



Need to measure timing of
algorithms

import time

for 1 1in range(l,25):
print (1)
for jJ 1n range (20) :
start time = time.perf counter()
for 1in range(50):
x = fibonacci (1)
duration = (time.perf counter() - start time) /50

print ("{:12.10f}".format (duration))
print ("\n")



Decorators

 Python uses decorators to allow changing functions
e A decorator is implemented by:

e Creating a function of a function that returns the
amended function



Decorators

def timeit (function) :
def clocked(*args) :

start time = time.perf counter ()

result = function (*args)

duration = (time.perf counter () - start time)
name = function. name

arg string = ', '.joiln(repr(arg) for arg 1in args)

print ('Function {} with arguments {} ran
in {} seconds'.format (
name, arg string, duration))
return result
return clocked



Decorators

e Decorator takes a function with positional arguments as
function

e Decorator defines a new version of the argument function

e And returns It.



Decorators

def timeit (function) :
def clocked(*args) :

start time = time.perf counter ()

result = function (*args)

duration = (time.perf counter () - start time)
name = function. name

arg string = ', '.joiln(repr(arg) for arg 1in args)

print ('Function {} with arguments {} ran
in {} seconds'.format (
name, arg string, duration))
return result
return clocked



Decorators

e Jo use a decorator, just put its name on top of the
function definition

e Decorator generator is executed when module is
imported (or generator is defined)

e When decorated function is defined, the modified
version Is created



Decorators

@timeit
def fibonacci (n) :
1f n ==
return O
1f n ==
return 1
else:
return fibonacci (n-1)+fibonacci (n-2)



Decorators

e |f we execute this function, we get to see how often
filbonacci is called on arguments already executed

>>> fibonacci (10)
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.14000007001413%e-07 seconds
.0870000011209413e-06 seconds
.1692790839999958 seconds
.2330000060956081e-06 seconds
.2676633440000131 seconds
.8000001003129%9e-07 seconds
.0470000120221812e-06 seconds
.09880945999999824 seconds
.4692909440000079 seconds
.51999997103303e-07 seconds
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.11281222700000626 seconds
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.21685028000000273 seconds
.7868284680000102 seconds
.6999999742402e-07 seconds
.0729999928571488e-06 seconds
.11366798399998856 seconds
.2930000110600304e-06 seconds
.2176230820000029 seconds
.839999914769578e-0"7 seconds



Memoization

e Recursion becomes very inefficient if repeated function
calls are made

e Can use a built in decorator in order to cache recently
calculated values.

e Uses Least Recently Used (LRU) policy



Memoization

@functools.lru cache (maxsize = 100)
#Qmemoize
def fibonacci (n) :
1f n ==
return O
1f n ==
return 1
else:
return fibonacci (n-1)+fibonacci (n-2)



Memoization

e |f you use both decorators, you can see the difference
between recalculation and accessing a cached value



Memoization

e We can also build our own decorator to store already
calculated function values in a dictionary

e Works, because the dictionary is not garbage collected

e This simple version works for single argument
functions

def memoilze (function) :
values = {}
def memoilzed (arqg) :
1f arg in values:
return values|[arg]
else:
result = function (arqg)
values[arg] = result
return result
return memoized



Memoization

 The dictionary can become too large, but otherwise, this
IS a very simple way to speed up recursion that revisits
arguments.



Memoization

e Avoiding recursion is often quite a bit faster

@timeit
def fib2 (n) :
small = 0
large = 1
for in range (n-1):

small, large = large, small+large
return large



Memoization

e You could even use an array to store already calculated
values

@timeit
def fib3(n):
fibs = [0, 1]
for 1 1in range (2, n+l):
fibs.append(fibs[-1]+fibs[-2])
return fibs[-1]



