Decorators in Python



Need to measure timing of
algorithms

e Measure execution time
e Wall-clock timing:
e Import a clock or time module
e Save current time
e EXxecute function
e Save current time

o Difference between saved times is the duration



Need to measure timing of
algorithms

* We measure the implementation of an algorithm

e Wall-clock times are inaccurate:
e System is doing other things

e Measuring introduces additional overhead



Need to measure timing of
algorithms

import time

for 1 1in range(l,25):
print (1)
for jJ 1n range (20) :
start time = time.perf counter()
for 1in range(50):
x = fibonacci (1)
duration = (time.perf counter() - start time) /50

print ("{:12.10f}".format (duration))
print ("\n")



Decorators

 Python uses decorators to allow changing functions
e A decorator is implemented by:

e Creating a function of a function that returns the
amended function



Decorators

def timeit (function) :
def clocked(*args) :

start time = time.perf counter ()

result = function (*args)

duration = (time.perf counter () - start time)
name = function. name

arg string = ', '.joiln(repr(arg) for arg 1in args)

print ('Function {} with arguments {} ran
in {} seconds'.format (
name, arg string, duration))
return result
return clocked



Decorators

e Decorator takes a function with positional arguments as
function

e Decorator defines a new version of the argument function

e And returns It.



Decorators

def timeit (function) :
def clocked(*args) :

start time = time.perf counter ()

result = function (*args)

duration = (time.perf counter () - start time)
name = function. name

arg string = ', '.joiln(repr(arg) for arg 1in args)

print ('Function {} with arguments {} ran
in {} seconds'.format (
name, arg string, duration))
return result
return clocked



Decorators

e Jo use a decorator, just put its name on top of the
function definition

e Decorator generator is executed when module is
imported (or generator is defined)

e When decorated function is defined, the modified
version Is created



Decorators

@timeit
def fibonacci (n) :
1f n ==
return O
1f n ==
return 1
else:
return fibonacci (n-1)+fibonacci (n-2)



Decorators

e |f we execute this function, we get to see how often
filbonacci is called on arguments already executed

>>> fibonacci (10)

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci
fibonacci

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments
arguments

H WRFRPRNORFF O WEFENORKFE SRNOEF WEDNDOHR

ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran
ran

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

O O HRPORFPr UQrhn o O OFPFOHOORFHE OWOoORF O O

.14000007001413%e-07 seconds
.0870000011209413e-06 seconds
.1692790839999958 seconds
.2330000060956081e-06 seconds
.2676633440000131 seconds
.8000001003129%9e-07 seconds
.0470000120221812e-06 seconds
.09880945999999824 seconds
.4692909440000079 seconds
.51999997103303e-07 seconds
.0500000087176886be-06 seconds
.11281222700000626 seconds
.958000012791672e-06 seconds
.21685028000000273 seconds
.7868284680000102 seconds
.6999999742402e-07 seconds
.0729999928571488e-06 seconds
.11366798399998856 seconds
.2930000110600304e-06 seconds
.2176230820000029 seconds
.839999914769578e-0"7 seconds



Memoization

e Recursion becomes very inefficient if repeated function
calls are made

e Can use a built in decorator in order to cache recently
calculated values.

e Uses Least Recently Used (LRU) policy



Memoization

@functools.lru cache (maxsize = 100)
#Qmemoize
def fibonacci (n) :
1f n ==
return O
1f n ==
return 1
else:
return fibonacci (n-1)+fibonacci (n-2)



Memoization

e |f you use both decorators, you can see the difference
between recalculation and accessing a cached value



Memoization

e We can also build our own decorator to store already
calculated function values in a dictionary

e Works, because the dictionary is not garbage collected

e This simple version works for single argument
functions

def memoilze (function) :
values = {}
def memoilzed (arqg) :
1f arg in values:
return values|[arg]
else:
result = function (arqg)
values[arg] = result
return result
return memoized



Memoization

 The dictionary can become too large, but otherwise, this
IS a very simple way to speed up recursion that revisits
arguments.



Memoization

e Avoiding recursion is often quite a bit faster

@timeit
def fib2 (n) :
small = 0
large = 1
for in range (n-1):

small, large = large, small+large
return large



Memoization

e You could even use an array to store already calculated
values

@timeit
def fib3(n):
fibs = [0, 1]
for 1 1in range (2, n+l):
fibs.append(fibs[-1]+fibs[-2])
return fibs[-1]



