
Order Statistics

Selection Problem
• Given n elements

• Find the ith smallest element

Minimum
• Determine the minimum of n elements

• At least n-1 comparisons are needed

Minimum
• Determine the minimum of n elements

• At least n-1 comparisons are needed

• Proof: Arrange the results of the comparisons as a
tournament tree with nodes being elements

Minimum
• At least n-1 comparisons are needed

• Proof: Arrange the results of the comparisons as a
tournament graph with nodes being elements

• Tournament graph needs to have a single connected
component in order to have a winner

Minimum
• At least n-1 comparisons are needed

• Proof: Arrange the results of the
comparisons as a tournament graph
with nodes being elements

• Tournament graph needs to have a
single connected component in
order to have a winner

• Component with x elements has to
have at least x-1 edges

• Proof by induction

Minimum
• This algorithm has n-1 comparisons

def min(array):
 current_best = array[0]
 for i in range(1, len(array)):

if array[i] < current_best:
current_best = array[i]

return current_best

Simultaneous Minimum and
Maximum

• Determine minimum and maximum of n elements
independently:

• 2(n-1) comparisons

Simultaneous Minimum and
Maximum

• Better method?

• Divide elements into four sets:

• A: could be either

• B: could be minimum but not maximum

• C: could be maximum but not minimum

• D: could be neither

• In the beginning, every element in A

• At the end, one in B, one in C, everybody else in D

Simultaneous Minimum and
Maximum

• Case 1: x ∈ A, y ∈ A

x < y ⟹ x ∈ B, y ∈ C

x > y ⟹ x ∈ C, y ∈ B

A: poss. both

B: poss. min

C: poss. max

D: neither

Two moves

Simultaneous Minimum and
Maximum

• Case 2: x ∈ A, y ∈ B

x < y ⟹ x ∈ B, y ∈ D

x > y ⟹ x ∈ C, y ∈ B

A: poss. both

B: poss. min

C: poss. max

D: neither

One move

Two moves, but can always rearrange input so that this does not happen

Simultaneous Minimum and
Maximum

• Case 3: x ∈ A, y ∈ C

x < y ⟹ x ∈ B, y ∈ C

x > y ⟹ x ∈ C, y ∈ D

A: poss. both

B: poss. min

C: poss. max

D: neither

Two moves if we are lucky, but we will not be

Simultaneous Minimum and
Maximum

• Case 4: A: poss. both

B: poss. min

C: poss. max

D: neither

x ∈ A, y ∈ D

x < y ⟹ x ∈ B, y ∈ D

x > y ⟹ x ∈ C, y ∈ D

One move

Simultaneous Minimum and
Maximum

• Case 5: A: poss. both

B: poss. min

C: poss. max

D: neither

x ∈ B, y ∈ B

x < y ⟹ x ∈ B, y ∈ D

x > y ⟹ x ∈ D, y ∈ B

One move

Simultaneous Minimum and
Maximum

• Case 6: A: poss. both

B: poss. min

C: poss. max

D: neither

x ∈ B, y ∈ C

x < y ⟹ x ∈ B, y ∈ C

x > y ⟹ x ∈ D, y ∈ D

Two moves, at best, but I can cook the input so that it does not
happen

Simultaneous Minimum and
Maximum

• Case 7: A: poss. both

B: poss. min

C: poss. max

D: neither

x ∈ B, y ∈ D

x < y ⟹ x ∈ B, y ∈ D

x > y ⟹ x ∈ D, y ∈ D

Simultaneous Minimum and
Maximum

• Case 9: A: poss. both

B: poss. min

C: poss. max

D: neither

x ∈ C, y ∈ D

x < y ⟹ x ∈ D, y ∈ D

x > y ⟹ x ∈ C, y ∈ D

Simultaneous Minimum and
Maximum

• Case 10: A: poss. both

B: poss. min

C: poss. max

D: neither

x ∈ D, y ∈ D

x < y ⟹ x ∈ D, y ∈ D

x > y ⟹ x ∈ D, y ∈ D

Simultaneous Minimum and
Maximum

• Start out with n elements in A

• Best moves involve two elements in A

• Can be done up to n/2 times

• Then need to move n-2 elements from B and C to D

• Can always reshuffle the elements that it needs
another n-2 comparisons

• Total is comparisons⌊
n
2

⌋ + n − 2

Algorithm
• Proof shows how it should be done

• Make n/2 comparisons of virgin elements

• Then determine the minimum among the losers and the
maximum among the winners

Implementation
def min_max(lista):
 if len(lista)%2:
 min=lista[0]
 max=lista[0]
 for i in range(1, len(lista)//2):

 if lista[2*i] < lista[2*i+1]:
 loser, winner = lista[2*i], lista[2*i+1]
else:

 loser, winner = lista[2*i+1], lista[2*i]
 if loser<min: min = loser
 if winner>max: max = winner

 return min, max

n − 1
2

⋅ 3 = ⌊
n
2

⌋ * 3

Implementation
else:
 if lista[0]<lista[1]:
 min, max = lista[0], lista[1]
 else:
 max, min = lista[1], lista[0]
 for i in range(1,len(lista)//2):
 if lista[2*i]<lista[2*i+1]:
 looser, winner = lista[2*i], lista[2*i+1]
 else:
 looser, winner = lista[2*i+1], lista[2*i]
 if min>looser: min=looser
 if max>winner: max=winner
 return min, max

1 + (
n − 2

2
) ⋅ 3

Evaluation

⌊ n
2 ⌋ * 3 n odd

1 + (n − 2
2) ⋅ 3 n even

≤ ⌊
n
2

⌋ * 3

Finding the Median
• Return the ith largest element in the array

• Quicksort like algorithm:

• Select a random pivot

• Divide the array in two sub-arrays

• One with elements larger

• One with elements smaller than pivot

Finding the Median
pivot

smaller than pivot larger than pivot

n − 1 comparisons

Finding the Median
• Now process one of the two sub-arrays in order to find

the i-th largest element

• On average, the sub-array is of size ⌊
n
2

⌋

Finding the Median
• Now process one of the two sub-arrays in order to find

the i-th largest element

• On average, the sub-array is of size

• Recursion formula is “intuitively”

⌊
n
2

⌋

C(n) = n − 1 + C(⌊
n
2

⌋

Finding the Median
• “Solution”

C(n) ≤ n + C(n/2) ≤ n +
n
2

+ C(n/4) ≤ n(1 +
1
2

+
1
4

+ …) ≤ 2n

Finding the Median
• Next time:

• How to make this argument exact

