Order Statistics

Selection Problem

e Given n elements

e Find the /1th smallest element

Minimum

e Determine the minimum of n elements

* At least n-1 comparisons are needed

Minimum

e Determine the minimum of n elements
* At least n-1 comparisons are needed

e Proof: Arrange the results of the comparisons as a
tournament tree with nodes being elements

s, 9y

Minimum

e At least n-1 comparisons are needed

e Proof: Arrange the results of the comparisons as a
tournament graph with nodes being elements

e Tournament graph needs to have a single connected
component in order to have a winner

5,y

Minimum

At least n-1 comparisons are needed

Proof: Arrange the results of the
comparisons as a tournament graph
with nodes being elements

Tournament graph needs to have a
single connected component In

order to have a winner Q

Component with x elements has to
have at least x-1 edges

* Proof by induction

Minimum

* This algorithm has n-1 comparisons

def min (array) :
current best = arrayl[0]
for 1 1n range(l, len(array)):
1f array[i1] < current best:
current best = arrayl[1i]
return current best

Simultaneous Minimum and
Maximum

e Determine minimum and maximum of n elements
independently:

e 2(n-1) comparisons

Simultaneous Minimum and
Maximum

e Better method?
e Divide elements into four sets:
e A: could be either
e B: could be minimum but not maximum
e C: could be maximum but not minimum
e D: could be neither
e |In the beginning, every element in A

e At the end, onein B, one in C, everybody else in D

Simultaneous Minimum and

Maximum

e Case 1: xXeEAyVEA

x<y = xeB,yel

x>y = xe(C,yeB

TwO moves

A: poss. both
B: poss. min
C: poss. max
D: neither

Simultaneous Minimum and
Maximum

e Case 2: xXeEAVERB

A: poss. both
B: poss. min

C: poss. max
X<y = x€B,yeD

D: neither

Two moves, but can always rearrandge

x>y = x€C,yEB

One move

Simultaneous Minimum and
Maximum

e Case 3: xeAyel

A: poss. both
B: poss. min

C: poss. max
x<y = xe€B,yel

D: neither

x>y = xe€C,yeD

Two moves 1f we are lucky, but we w

Simultaneous Minimum and

Maximum

e Cased4: xe€A,yeD

x<y = xebBb,yeD

x>y = xe(C,yeD

One move

A: poss. both
B: poss. min
C: poss. max
D: neither

Simultaneous Minimum and

Maximum

e Case5: xeBb,yeBb

x<y = xeB,yeD

x>y = xeD,yeB

One move

A: poss. both
B: poss. min
C: poss. max
D: neither

Simultaneous Minimum and
Maximum

e Case6: xeB,yeC

A: poss. both
B: poss. min

C: poss. max
x<y = xe€B,ye(l

D: neither

Two moves, at best, but I can cook
happen

x>y = xeD,yeD

Simultaneous Minimum and
Maximum

e Case7: xeB,yeD

x<y = xeB,yeD

x>y = xeD,yeD

InNimum and
Simultaneous Minimu

Imum
MaXImu A: poss. both
B: po .mia?X
9. o D: nefther
e Case 9:
— xeD,yeD
x <y

D
c(,y €
X>y — X

Simultaneous Minimum and
Maximum

e Case10: xe€D,ye D

x<y = xeD,yeD

x>y = xeD,yeD

Simultaneous Minimum and
Maximum

e Start out with n elements in A
 Best moves involve two elements in A
e Can be done up to n/2 times
* Then need to move n-2 elements from B and C to D

e (Can always reshuffle the elements that it needs
another n-2 comparisons

n
e Total is LEJ +n—2 comparisons

Algorithm

e Proof shows how it should be done
* Make n/2 comparisons of virgin elements

e Then determine the minimum among the losers and the
maximum among the winners

Implementation

def min max(lista):
1f len(lista) %2:
min=1lista[0]
max=1ista[0]
for 1 in range(l, len(lista)//2):
1f lista[2*1] < lista[2*i+1]:

loser, winner = lista[2*1], listal[2*1+1]
else:

loser, winner = lista[2*1+1], lista[2*1]
1f loser<min: min = loser
1f winner>max: max = wlnner

return min, max

n
3= |=]|*3
P 5!

Implementation

else:
if listaf[0]<listall]:
min, max = lista[0], listal[l]
else:
max, min = listal[l], lista[O0]

for 1 in range(l,len(lista)//2):
1if lista[2*1]<listal[2*1i+1]:

looser, winner = lista[2*1], lista[2*i1+1]
else:
looser, winner = lista[2*1i+1], lista[2*1i]

1f min>looser: min=looser
1f max>wlinner: max=wlinner
return min, max

i I(n—2).3
2

Evaluation

L%J *3 n 0do

IN

_ [=] %3
1+(n22)-3 n even 2

Finding the Median

* Return the ith largest element in the array

e Quicksort like algorithm:
e Select a random pivot
e Divide the array in two sub-arrays
e One with elements larger

e One with elements smaller than pivot

Finding the Median

pivot

smaller than pivot larger than pivot

n—1 comparisons

Finding the Median

e Now process one of the two sub-arrays in order to find
the /-th largest element

n
e On average, the sub-array is of size | =

2

Finding the Median

e Now process one of the two sub-arrays in order to find
the /-th largest element

n
e On average, the sub-array is of size | =

2

e Recursion formula is “intuitively”

C(n)=n—1+C([§J

Finding the Median

e “Solution”

1
Cn) < n+Cnl2) < n - ;l FCui4) Sl + 24 o +.) < 2n

Finding the Median

e Next time:

e How to make this argument exact

