Comprehension

Thomas Schwarz, SJ

Loops and Strings

Repetition

Accessing Elements

 |n a slice, the first element is the start
e The second the stop value

* The third the stride, which can be negative
e lista = [1,3,5,7,9,11,13,15,17,19,21,23,25,27]

e Whatis 1ista[2:5]

Accessing Elements

 |n a slice, the first element is the start
e The second the stop value

* The third the stride, which can be negative
e lista = [1,3,5,7,9,11,13,15,17,19,21,23,25,27]
e Whatis 1ista[2:5]

* [5,7,9]

Accessing Elements

 |n a slice, the first element is the start
e The second the stop value

* The third the stride, which can be negative
e lista = [1,3,5,7,9,11,13,15,17,19,21,23,25,27]

e Whatis 1ista[:5]

Accessing Elements

 |n a slice, the first element is the start
e The second the stop value

* The third the stride, which can be negative
e lista = [1,3,5,7,9,11,13,15,17,19,21,23,25,27]

e Whatis 1ista[:5]

Accessing Elements

 |n a slice, the first element is the start
e The second the stop value

* The third the stride, which can be negative
e lista = [1,3,5,7,9,11,13,15,17,19,21,23,25,27]

e Whatis lista[7:2:-2]

Accessing Elements

 |n a slice, the first element is the start
e The second the stop value

* The third the stride, which can be negative
e lista = [1,3,5,7,9,11,13,15,17,19,21,23,25,27]
e Whatis lista[7:2:-2]

e [15, 11, 7]

Creating Lists

e Create a list of the first 100 numbers a; defined by
¢ CZO — 1

'Cll:l

® Cll=\/dl_2><al_1+1

Creating Lists

e Create a list of the first 100 numbers a; defined by
¢ CZO — 1

'Cll:l

e Need to create a list, that starts with [1,1]

Creating Lists

e Create a list of the first 100 numbers a; defined by
¢ CZO — 1

'Cll:l

e Need to create a list, that starts with [1,1]

e Then we add to the list the latest element

Creating Lists

e Create a list of the first 100 numbers a; defined by
¢ CZO — 1

'Cll:l

e Need to create a list, that starts with [1,1]

e Then we add to the list the latest element

* Which we calculate using the last and second-last
element in the list

Creating Lists

o Create a list of the first 100 numbers a; defined by
[ao = 1

oalzl

° Cll- = \/Cli_zxai_l + 1
 Need to create a list, that starts with [1,1]

e Then we add to the list the latest element

e Which we calculate using the last and second-last element in the list

import math
lista = [1,1]
for 1 in range(2,101):
. lista.append (math.sgrt(listal[-1]*listal[-2]+1))

Processing Strings

* Write a function that tests whether the string has the
pattern 'aba’ in it.

def aba(astring):
return 'aba' 1n astring

Processing Strings

* Write a function that takes a string as an input. It then
replaces all occurrences of 'ss' with a '3’

Processing Strings

* Write a function that takes a string as an input. It then
replaces all occurrences of 'ss’' with a '3’

def ss3(astring):
result = []
for letter 1n astring:

return ''.join (result)

* When we do not see an 's': we just copy it
* |[f we see an 's’, it depends on what the next letter is.
* We can set a Boolean flag

* But we do not copy yet

Processing Strings

Wi ei&s §t>l||l diein.

Copy:

M| u

Because we just saw an ’s’, push ‘3’

M| u| s | s |t

Copy

Processing Strings

e |[f we see an's’, it depends on what the next letter is.
* We can set a Boolean flag if this is the case

e |f we have seen an 's' but the current letter is not an 's’,
then put in an 's' and the current letter

* |f we have just seen an 's' and the current letter is an
's’, then we put a '3’

Processing Strings

just seen s not just seen s

letteris s push '3’ remember to have seen s

push s, then the letter remember to not have seen s, push letter

Processing Strings

def ss3(astring) :

result = []
seen S = False
for letter 1n astring:
1f letter == 's' and seen S:
result.append('3"')
seen S = False
elif letter == 's' and not seen S:
seen S = True
elif letter != 's' and seen S:
result.append('s"')
result.append(letter)
seen S = False
elif letter != 's' and not seen S:
seen S = False

result.append(letter)
return ''.join(result)

