
Comprehension
Thomas Schwarz, SJ

Comprehension
• List comprehension is used in functional programming but

it becomes handy

• We define a list with a for clause within the brackets
that define the list.

• Here are two ways to construct a list consisting of
squares

lista = []

for i in range(100):

 lista.append(i**2)

lista = [i**2 for i in range(100)]

Comprehension
[x**2 for x in range(100)]

output
expression

generator

expression variable list

(or list-like expression)

Self Test
• The following code fragment defines a list of elements

• Use list comprehension in order to generate the same list

• Use the interactive window in IDLE

Self Test Solution

Comprehension
• List comprehension can add an if-condition

• Result is now all even squares.
[x**2 for x in range(100)]if x%2 == 0

Comprehension
• List comprehension can be quite involved

• Remember that we can check for types of variables

• We use the built-in function isinstance()

• Example: is True

• Application to list comprehension: Squaring the
elements of a list (a_list) that are integers

isinstance(345, int)

Comprehension
• We can nest comprehensions

• A list of all composite numbers between 2 and 100.

• A composite number is a product of two integers i and j
that are larger than 1.

• However, the result contains many repeated numbers

[i*j for i in range(2,51) for j in range(2,101) if i*j < 100]

[4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,
68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51,
54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68,
72, 76, 80, 84, 88, 92, 96, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 12, 18, 24, 30, 36, 42,
48, 54, 60, 66, 72, 78, 84, 90, 96, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 16, 24, 32, 40, 48, 56, 64, 72, 80,
88, 96, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 20, 30, 40, 50, 60, 70, 80, 90, 22, 33, 44, 55, 66, 77, 88, 99, 24, 36, 48,
60, 72, 84, 96, 26, 39, 52, 65, 78, 91, 28, 42, 56, 70, 84, 98, 30, 45, 60, 75, 90, 32, 48, 64, 80, 96, 34, 51, 68, 85, 36,
54, 72, 90, 38, 57, 76, 95, 40, 60, 80, 42, 63, 84, 44, 66, 88, 46, 69, 92, 48, 72, 96, 50, 75, 52, 78, 54, 81, 56, 84, 58,
87, 60, 90, 62, 93, 64, 96, 66, 99, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98]

Comprehensions
• Luckily, we can use a set instead:

• The difference is just curly brackets instead of rectangular
brackets

• The result is now simpler:

{i*j for i in range(2,51) for j in range(2,51) if i*j < 100}

{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25,
26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44,
45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62,
63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80,
81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96,
98, 99}

Comprehensions
• We can now get all of the prime numbers between 2 and

100 by using this set, using comprehension on top of
comprehension

• This is cool but will not win any price for clarity

• You can make it more comprehensible if you define a set
of composite numbers before using it

{i for i in range(2,100) if i not in

{i*j for i in range(2,51) for j in range(2,51) if i*j < 100}}

Self Test
• Use the previous example to generate a set of all

numbers between 1 and 100 (included) that are not
squares

Self Test Solution

seta = {i for i in range(1,101) if i not in {i*i for i in range(11)}}

Comprehensions
• You can also use comprehension on dictionaries

• Here is how you create a dictionary that associates
integers up to 100*100 to their square root

• {i*i: i for i in range(101)}

Comprehensions
• And here is how you can try to “invert” a dictionary where the

roles of keys and values are swapped

• This one works well, because the values are different for
different keys

• And this one inverts with some arbitrariness

drev = {d[key]:key for key in d}

Self Test
• You are given a function func that takes one integer

argument

• You want to create a memoization dictionary that
associates i for i in range(100) with func(i)

Self Test Answer
mem_func = {i: func(i) for i in range(101)}

func = lambda x: 3*x+4

gives

Map, Filter

Map
• Map allows you to apply a function to all elements of a list

• Example:

• Why the list? map returns an iterator (so that it does not
waste memory on values that are not used)

func = lambda x: x+3

list(map(func, [2,3,4])

Filter
• You filter a list by applying a condition

• The result is the list formed by all elements that satisfy the condition

• You need to have a boolean function, i.e. a function that returns
True or False

• Here is an example of such a function:

• Returns True if x is divisible by 2

• Returns False otherwise

• x%2 is zero if and only if x is even

lambda x: x%2==0

Filter
• The function filter(function, sequence) return an

iterable of all elements in the sequence t that render the
function True.

Comprehension in
Action

Python

Getting the listing of a
directory

• Task: Generate a listing of all files in a directory that end
in “.py”

• Tool: import the os module and use listdir

[filename for filename in os.listdir(directoryname)

 if filename.endswith(".py")]

Creating sub-directories
• Task: We want to create a sub-dictionary of a dictionary

where the keys are restricted by a condition

• Use dictionary comprehension

def evenkeys(dictionary):

 return { i:dictionary[i] for i in dictionary if i%2==0}

Filtering a list
• We want to filter a list using a criterion

1. We can use the filter function

2. We can use list comprehension, which is often simpler

• Example: Only display the positive elements of this large list

Mapping a list
• We want to apply a function to all elements in a list

Zip

Zip
• Often we have related data in a number of lists

• Example: list of student names, list of grades, list of
high school

• [“Frankieboy”, “Violet”, “Kumar”, “Dshenghis”]

• [“D”, “A”, “B”, “C”]

• [“MPS1”, “MH”, “MH”, “MPS59”]

• Zipping will create a zip object that generates the
tuples (“Frankieboy”, “D”, “MPS1”), (“Violet”,“A”,”MH”),
(“Kumar”, “B”, “MH”), (“Dshenghis”,”C”, “MPS59”)

Zip
• We can reach the same effect with list comprehension,

but since we cannot enumerate in parallel through several
iterables, we need to use indices.

Zip
• What happens if you give zip iterables of different length

• E.g. a list of 5, a list of 4 and a list of 3 elements?

• The result is a zip object of length the minimum of the
lengths.

Zip
• Undoing a zip:

• If you make a list alist out of a zip object, you can
break it apart with the zip(*alist) command

Exercises

Exercise
• Use list comprehension:

• Flatten a matrix

• Example: [[1, 2, 3], [4, 5, 6], [7, 8, 9]] —>
[1,2,3,4,5,6,7,8,9]

Solution
• Loop Solution:

• Using extend

• But this cannot be translated

def flatten1(matrix):

 result = []

 for row in matrix:

 result.extend(row)

 return result

Solution
• A loop solution that can be translated

• This is not english, but Python: for row in matrix for item
in row

def flatten2(matrix):

 result = []

 for row in matrix:

 for item in row:

 result.append(item)

 return result

Solution
• Now we can do comprehension with the same order of for

loops

def flatten3(matrix):

 return [item for row in matrix for item in row]

Exercise
• Given a list, subtract its reverse from itself

• [10, 7, 5, 4, 2, 1] —> [10-1, 7-2, 5-4, 4-5, 2-7, 1-10]

Solution
• Loop version:

• Use a slice to get the reverse of the list

def clw(lista):

 result = []

 for first, second in zip(lista, lista[::-1]):

 result.append(first-second)

 return result

Solution
• Translated into comprehension

def clwc(lista):

 return [first - sec for first, sec in zip(lista, lista[::-1])]

Exercise
• Given a matrix, calculate its negative

[[1,2,4],

 [2,5,8],

 [3,3,3],

 [5,4,2]

]

Solution
• A double loop

def neg1(matrix):

 result = []

 for row in matrix:

 new_row = []

 for item in row:

 new_row.append(-item)

 result.append(new_row)

 return result

Solution
• A single loop with one interior comprehension

def neg2(matrix):

 result = []

 for row in matrix:

 result.append([-item for item in row])

 return result

Solution
• A double comprehension (which shows that you might not

want to overdo comprehension)

def neg3(matrix):

 return [[-item for item in row] for row in matrix]

Generator Comprehension
• We can use comprehension on generators

• Called generator expressions

• Generators are defined with round parentheses
squares = (n**2 for n in range(1, 100))

>>> next(squares)

1

>>> next(squares)

4

>>> next(squares)

9

>>> next(squares)

16

>>> next(squares)

Traceback (most recent call last):

 File "<pyshell#36>", line 1, in <module>

 next(squares)

StopIteration

Generator Comprehension
• The generator expression can be called with next()

• However, what if we want an infinite generator?

• Could define a generator the old fashioned way

def squares1():

 n=0

 while True:

 n+=1

 yield(n**2)

Generator Comprehension
• Or use generators defined in itertools

import itertools

squares2 = (n**2 for n in itertools.count(1,1))

Generator Comprehension

• WHY?
• Assume you want to process a huge set of data

• You need to create intermediate results

• If you use lists, they eat up memory

• If you use generators, they don't

And now for something
completely different

Copying Data Structures
• Copying and assignment are two different things

Copying Data Structures
• Copying and assignment are two different things

• We have an object a

• We assign a to b

• But the two objects are still linked:

a = set(1, 2, “one”)

Copying Data Structures
• Copying and assignment are two different things

a = set([1, 2, "one"])

print(a)

b = a

print(b)

Now we change set a

a.remove("one")

Which also changes set b

print(b)

Copying Data Structures
• Copying and assignment are two different things

• Here is what happens

• In Python, names point to objects

• Assigning adds a name to the same object

a {1, 2, “one”}

a {1, 2, “one”}

b

Copying Data Structures
• Copying and assignment are two different things

• Since there is only one object, I can manipulate the
object through either name

a {1, 2, “one”}

b

Copying Data Structures
• Copying and assignment are two different things

• If I want to copy, I need to do so explicitly

• Now changes to one do not change the other!

lista = [1, 2, "three", [4,5]]

listb = [x for x in lista]

lista[2] = 3

print(lista)

print(listb)

Copying Data Structures
• Copying and assignment are two different things

• One can use slices to copy lists

• listb = lista[0:4]

Copying Data Structures
• Copying becomes difficult if we have compound

objects

• E.g.: A list which contains lists, sets, …

• Shallow copy:

• Resulting copies have shared elements

Copying Data Structures
• Example: A matrix as a list of rows

• Create zero row by multiplying list with an integer

• One might think it creates a structure like

• which is not entirely false

matrix = 3*[4*[0]]

[[0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0]]

Copying Data Structures
• We can get the elements as we should

• And we can set elements

• But now we see that we got three times the same row

matrix = 3*[4*[0]]

print(matrix[3][2])

matrix = 3*[4*[0]]

matrix[3][2] = 5

Copying Data Structures
matrix = 3*[4*[0]]

print(matrix)

matrix[2][3] = 5

print(matrix)

 RESTART: /Users/tjschwarzsj/Google Drive/AATeaching/Python/Programs/copying.py

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

[[0, 0, 0, 5], [0, 0, 0, 5], [0, 0, 0, 5]]

Copying Data Structures
• How can we do this:

• Need to construct the zero rows independently

• Use e.g. list comprehension

matrix = [[0 for _ in range(4)] for i in range(3)]

Copying Data Structures
• Shallow copy: Assume we have

• We create a shallow copy by

• But here is what is happening

lista = [1, 2, [3,4,5]]

lista = [1, 2, [3, 4, 5]]

listb = lista[:]

lista

{1, 2, “one”}

listb

[1,2, ?]

[1,2, ?]

lista = [1, 2, [3, 4, 5]]

listb = lista[:]

The two lists still share a component. We can change this

component in one list and change it in the other one as well.

Copying Data Structures
• We have two copies of the list, but the third element are

two different names for the same object

lista

{1, 2, “one”}

listb

[1,2, ?]

[1,2, ?]

lista = [1, 2, [3, 4, 5]]

listb = lista[:]

Copying Data Structures
• In consequence, I can alter the same element in the list

which is element number 2

• prints out

lista = [1, 2, [3, 4, 5]]

listb = lista[:]

lista[2][0] = 6

print(lista)

print(listb)

[1, 2, [6, 4, 5]]

[1, 2, [6, 4, 5]]

Copying Data Structures
• I need to use a deep copy

• Easiest:

• Use the module copy

• Use copy.deepcopy(object) for deep copying

• Use copy.copy(object) for shallow copying

Copying Data Structures
• This is a famous Python gotcha

• Behavior is not intuitive.

