Comprehension

Thomas Schwarz, SJ

Comprehension

e List comprehension is used in functional programming but
it becomes handy

e We define a list with a for clause within the brackets
that define the list.

* Here are two ways to construct a list consisting of
squares

lista = []
for 1 1n range(100) :
lista.append (1**2)

lista = [1**2 for 1 1n range(100)]

Comprehension

| x**2 for x 1n range (100)]

output generator list

expression expression VRIS (or list-like expression)

Self Test

* The following code fragment defines a list of elements

* Use list comprehension in order to generate the same list

e Use the interactive window in IDLE

>>> lista = []
>>> for 1 in range(10):
lista.append(1**3-1**2+1-1)

>>> Lista
[-1, @, 5, 20, 51, 104, 185, 300, 455, 656]
l

Self Test Solution

>>> lista = [1**3-1**2+1-1 for 1 in range(10)]
>>> Lista
(-1, @, 5, 20, 51, 104, 185, 300, 455, 6560]

l

Comprehension

e List comprehension can add an if-condition

 Result is now all even squares.
[x**2 for x 1n range(100) 1f x%2 == 0]

Comprehension

e List comprehension can be quite involved
* Remember that we can check for types of variables
e We use the built-in function isinstance ()
e Example: isinstance (345, int) Is True
e Application to list comprehension: Squaring the

elements of a list (a_list) that are integers

>>> a_list = [1, "4", 9, "a", 0, 4]
>>> [e**2 e 1n a_list 1f isinstance(e, int)]
[1, 81, @, 16]

Comprehension

 \We can nest comprehensions
* A list of all composite numbers between 2 and 100.

* A composite number is a product of two integers/ and
that are larger than 1.

(1*7 for 1 1n range(2,51) for j in range(2,101) if i*3 < 100]

e However, the result contains many repeated numbers

(4, ¢, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,
68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51,
54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 8, 12, 1le6, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68,
72, 76, 80, 84, 88, 92, 96, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, %0, 95, 12, 18, 24, 30, 36, 42,
48, 54, ¢0, 66, 72, 78, 84, 90, 96, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 16, 24, 32, 40, 48, 56, 64, 72, 80,
88, 96, 18, 27, 36, 45, 54, 63, 72, 81, %0, 99, 20, 30, 40, 50, 60, 70, 80, 90, 22, 33, 44, 55, 66, 77, 88, 99, 24, 36, 48,
60, 72, 84, 96, 26, 39, 52, 65, 78, 91, 28, 42, 56, 70, 84, 98, 30, 45, 60, 75, 90, 32, 48, 64, 80, 96, 34, 51, 68, 85, 36,
54, 72, %0, 38, 57, 76, 95, 40, 60, 80, 42, 63, 84, 44, 66, 88, 46, 69, 92, 48, 72, 96, 50, 75, 52, 78, 54, 81, 56, 84, 58,
87, 60, 90, 62, 93, 64, %6, 66, 99, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98]

Comprehensions

e |uckily, we can use a set instead:

{1*3 for 1 1n range(2,51) for j 1n range(2,51) 1if 1*j < 100}

* The difference is just curly brackets instead of rectangular
brackets

* The result is now simpler:

{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25,
26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44,
45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62,
63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80,
81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96,
98, 99)

Comprehensions

 We can now get all of the prime numbers between 2 and
100 by using this set, using comprehension on top of
comprehension

{1 for 1 1n range(2,100) 1f 1 not 1in
{1*J for 1 1n range(2,51) for j 1n range(2,51) 1if 1*3 < 100}}

* This is cool but will not win any price for clarity

* You can make it more comprehensible if you define a set
of composite numbers before using it

Self Test

* Use the previous example to generate a set of all
numbers between 1 and 100 (included) that are not
squares

Self Test Solution

seta = {1 for 1 1n range(1l,101) 1f 1 not in {1*1 for 1 1in range(ll) }}

Comprehensions

* You can also use comprehension on dictionaries

 Here is how you create a dictionary that associates
integers up to 100*100 to their square root

¢ {1*1: 1 for 1 1n range(101)}

>>> {1*1: 1 for 1 in range(101)}

{6: @, 1: 1, 4: 2, 9: 3, 16: 4, 25: 5, 36: 6, 49: 7, 064: 8, 81: 9, 100: 10, 121:
11, 144: 12, 169: 13, 196: 14, 225: 15, 256: 16, 289: 17, 324: 18, 361: 19, 400
: 20, 441: 21, 484: 22, 529: 23, 576: 24, 625: 25, 676: 26, 729: 27, 784: 28, 84
1: 29, 900: 30 961: 31 1024: 32, 1089: 33, 1156: 34, 1225: 35, 1296. 36, 1369:
37, 1444: 38, 1521: 39, 1600: 40, 1681: 41, 1764: 42, 1849: 43, 1936: 44, 2025:
45, 2116: 46, 2209: 47, 2304: 48, 2401 49, 2500: 50, 2601: 51, 2704: 52, 2809:
53, 2916: 54, 3025: 55, 3136: 56, 3249: 57, 3364: 58, 3481: 59, 3600: 60, 3721:
61, 3844: 62, 3969: 63, 4096: 64, 4225: 65, 4356: 66, 4489: 67, 4624: 68, 4761:
09, 4900: 70, 5041: 71, 5184: 72, 5329: 73, 5476: 74, 5625: 75, 5776: 76, 5929:
77, 6084: 78, 6241: 79, 0400: 80, 6561: 81, 6724: 82, 6889: 83, 7056: 84, 7225:
85, 7396: 86, 7569: 87, 7744: 88, 7921: 89, 8100: 90, 8281: 91, 8464: 92, 8649:
93, 8836: 94, 9025: 95, 9216: 96, 9409: 97, 9604: 98, 9801: 99, 10000: 100}

Comprehensions

And here is how you can try to “invert” a dictionary where the
roles of keys and values are swapped

drev = {d[key] :key for key 1in d}

This one works well, because the values are different for
different keys

>> d = {1:4, 2:5, 3:7, 4:8, 5:9}

>>> {d[key]:key ' key in d}

{4: 1, 5: 2, 7: 3, 8: 4, 9: 5}

And this one inverts with some arbitrariness
>>> d = {1:4, 2:5, 3:4, 4:5, 6:7, 7:6}
>>> {d[key]:key " key 1in d}
{4: 3, 5: 4, 7: 6, 6: 7}

Self Test

e You are given a function func that takes one integer
argument

 You want to create a memoization dictionary that
associates i for iin range (100) with func (1)

Self Test Answer

mem func = {1: func (1) for 1 1n range(101) }

func = lambda x: 3*x+4

gives
>>> func = lambda x: 3*x+4
>>> mem = {x: func(x) for x in range(101)}
>>> mem

{0: 4, 1: 7, 2: 10, 3: 13, 4: 16, 5: 19, 6: 22, 7: 25, 8: 28, 9: 31, 10: 34, 11:
37, 12: 40, 13: 43, 14: 46, 15: 49, 16: 52, 17: 55, 18: 58, 19: 61, 20: 64, 21:
67, 22: 70, 23: 73, 24: 706, 25: 79, 26: 82, 27:. 85, 28: 88, 29: 91, 30: 94, 31:
97, 32: 100, 33: 103, 34: 106, 35: 109, 36: 112, 37: 115, 38: 118, 39: 121, 40:
124, 41: 127, 42: 130, 43: 133, 44: 136, 45: 139 46: 142, 47: 145, 48: 148 49
: 151 50: 154 51: 157, 52: 160, 53: 163, 54: 166, 55: 169 56: 172, 57: 175, 5

8: 178, 59: 181, 60: 184, 61: 187, 62: 190, 63: 193, 64: 196, 65: 199, 66: 202,

67: 205, 68: 208, 69: 211, 70: 214, 71: 217, 72: 220, 73: 223, 74: 226, 75: 229,
76: 232, 77:. 235, 78: 238, 79: 241, 80: 244, 81: 247, 82: 250, 83: 253, 84: 256
, 85: 259, 86: 262, 87: 265, 88: 268, 89: 271, 90: 274, 91: 277, 92: 280, 93: 28

3, 9?: 286, 95: 289, 96: 292, 97: 295, 98: 298, 99: 301, 100: 304}

Map, Filter

Map

* Map allows you to apply a function to all elements of a list

e Example:

func = lambda x: x+3
list (map (func, [2,3,4])

* Why the list? map returns an iterator (so that it does not
waste memory on values that are not used)

>>> func = lo X: X+3
| >>> list(map(func, [2,3,4]))
[5, 6, 7]

Filter

* You filter a list by applying a condition
* The result is the list formed by all elements that satisfy the condition

* You need to have a boolean function, i.e. a function that returns
True or False

* Here is an example of such a function:
lambda x: XxX%2==
* Returns True if x is divisible by 2

e Returns False otherwise

e Xx%2 is zero if and only if X is even

Filter

e The function filter (function, sequence) return an
iterable of all elements in the sequence t that render the
function True.

>>> fibonacci = [@, 1, 1, 2, 3, 5, 8, 13, 21, 44, 65, 109, 174, 283]

>>> list(filter(lambda x: x%2==0, fibonacci))
[0, 2, 8, 44, 174]
>>> Llist(filter(lambda x: x%2==1, fibonacci))

(1, 1, 3, 5, 13, 21, 65, 109, 283]
oo

Comprehension in
Action

Python

Getting the listing of a
directory

 Task: Generate a listing of all files in a directory that end
in “.py”

 Jool: import the os module and use listdir

[filename for filename 1n os.listdir (directoryname)
1f filename.endswith (".py")]

Creating sub-directories

e Task: We want to create a sub-dictionary of a dictionary
where the keys are restricted by a condition

* Use dictionary comprehension

def evenkeys (dictionary) :

return { i1:dictionary[i] for 1 in dictionary 1f 1%2==0}

Filtering a list

* \We want to filter a list using a criterion
1. We can use the filter function
2. We can use list comprehension, which is often simpler

* Example: Only display the positive elements of this large list

>>> rlist

[2ze, -1, 3, o, 17, 1, 20, 19, 24, 4, 21, o, 4, 7, 20, 2, 1, 13, 0, 21, 23, 6, 2,
22, 4, 3, 6, 2, 13, -5, 3, 13, 20, 23, 14, 13, 13, 20, 10, 24, 9, -1, -4, 22, 1
5, 21, 18, -1, 16, 13, 1, 3, 12, 21, @, 9, 4, 24, -3, 4, 10, 8, 1, 19, 3, 20, 4,
5, 25, 8, 8, 14, -5, 23, 24, 14, 1, @0, -5, -3, 3, -4, 11, 1, 8, 17, 2, 2, 23, 6
, 2, 25, 15, 4, 23, 20, 5, -3, 11, 16]

>>> list(filter(lambda x: x>0, rlist))

[2e, 3, 17, 1, 20, 19, 24, 4, 21, 4, 7, 20, 2, 1, 13, 21, 23, 6, 2, 22, 4, 3, 6,
2, 13, 3, 13, 20, 23, 14, 13, 13, 20, 10, 24, 9, 22, 15, 21, 18, 16, 13, 1, 3,
12, 21, 9, 4, 24, 4, 10, 8, 1, 19, 3, 20, 4, 5, 25, 8, 8, 14, 23, 24, 14, 1, 3,
11, 1, 8, 17, 2, 2, 23, 6, 2, 25, 15, 4, 23, 20, 5, 11, 16]

>>> [x for x in rlist if x>0]

[2e, 3, 17, 1, 20, 19, 24, 4, 21, 4, 7, 20, 2, 1, 13, 21, 23, 6, 2, 22, 4, 3, 6,
2, 13, 3, 13, 20, 23, 14, 13, 13, 20, 10, 24, 9, 22, 15, 21, 18, 16, 13, 1, 3,
12, 21, 9, 4, 24, 4, 10, 8, 1, 19, 3, 20, 4, 5, 25, 8, 8, 14, 23, 24, 14, 1, 3,

11, 1, 8, 17, 2, 2, 23, 6, 2, 25, 15, 4, 23, 20, 5, 11, 16]

Mapping a list

 We want to apply a function to all elements in a list

>>> rlist =[random.randint(-10,20) for _ in range(20)]

>>> rlist

[-2, -9, 20, -10, -9, 19, -4, 1, 16, 3, 8, -10, 4, -2, 11, 8, 11, -7, -2, -3]
>>> list(map(laombda x: (x-6)**2, rlist))

[64, 225, 196, 256, 225, 169, 100, 25, 100, 9, 4, 256, 4, 64, 25, 4, 25, 169, 64
, 81]

>>> [(x-6)**2 for x in rlist]

[64, 225, 196, 256, 225, 169, 100, 25, 100, 9, 4, 256, 4, 64, 25, 4, 25, 169, o4
, 81]
oo

ZIp

ZIp

e Often we have related data in a number of lists

e Example: list of student names, list of grades, list of
high school

* ["Frankieboy”, “Violet”, “Kumar”, “Dshenghis”]

:“D!!, “A”, “B”, “C”]

:“MPS-I ”, HMH”, “MH”, “MPSSQ”]

e Zipping will create a zip object that generates the
tuples (“Frankieboy”, “D”, “MPS17), (“Violet”,“A”,”MH?”),
(HKumar”, “BH, “MH”), (“DShenghiS”,”C”, “MPS59”)

ZIp

* We can reach the same effect with list comprehension,
but since we cannot enumerate in parallel through several
iterables, we need to use indices.

>>> names = ["Albertina”, "Bertram", "Chris", "David"]

>>> grades = ["A", "B", "C", "D"]

>>> highschools = ["MH", "SHH", "LGH", "MHT"]

>>> zip(names, grades, highschools)

<zip object at @x1153e8bc8>

>>> list(zip(names, grades, highschools))

[("Albertina', 'A', 'MH'), ('Bertram', 'B', 'SHH'), ('Chris', 'C', 'LGH'), ('David', 'D', 'MHT')]
>>> [(names[i], grades[i], highschools[i]) for 1 in range(len(names))]

[('A}bertina', "A', '"MH'), ('Bertram', 'B', 'SHH'), ('Chris', 'C', 'LGH'), ('David', 'D', 'MHT')]

 What happens if you give zip iterables of different length

e E.g.alist of 5, alist of 4 and a list of 3 elements?

* The result is a zip object of length the minimum of the
lengths.

ZIp
* Undoing a zip:

e |[fyoumake alist alist out of azip object, you can
break it apart with the zip (*alist) command

>>> names ["Albertina"”, "Bertram", "Chris", "David"]

>>> grades = ["A", "B", "C", "D"]

>>> highschools = ["MH", "SHH", "MPS57", "LGH"]

>>> alist = list(zip(names, grades, highschools))

>>> alist

[('Albertina', 'A', 'MH'), ('Bertram', 'B', 'SHH'), ('Chris', 'C', 'MPS57'), ('D

avid', 'D', 'LGH')]

>>> list(zip(*alist))

[('Albertina', 'Bertram', 'Chris', 'David'), ('A', 'B', 'C', 'D'), ('MH', 'SHH',
"MPS57', 'LGH')]

>>> names, grades, highschools = tuple(list(zip(*alist)))

>>> names

('Albertina', 'Bertram', 'Chris', 'David')

>>> grades

C'A', "B, 'C", 'D")

>>> highschools

('MH:, "SHH', 'MPS57', 'LGH')

Exercises

Exercise

e Use list comprehension:
e Flatten a matrix

e Example: [[1,2, 3], 1[4, 5,6],[7,8,9]] —>
[1,2,3,4,5,6,7,8,9]

Solution

* Loop Solution:

e Using extend

def flattenl (matrix) :
result = []
for row 1n matrix:
result.extend (row)
return result

e But this cannot be translated

Solution

* A loop solution that can be translated

def flatten? (matrix) :
result = []
for row 1n matrix:
for i1tem 1n row:
result.append (item)
return result

* This is not english, but Python: for row in matrix for item
In row

Solution

* Now we can do comprehension with the same order of for
loops

def flatten3 (matrix) :
return [i1item for row 1n matrix for i1tem 1n row]

Exercise

e (Given a list, subtract its reverse from itself

e [10,7,5,4,2,1] —>[10-1, 7-2, 5-4, 4-5, 2-7, 1-10]

Solution

| oop version:

 Use a slice to get the reverse of the list

def clw(lista):
result = []
for first, second 1in zip(lista, listal[::-11]):
result.append(first—-second)

return result

Solution

* Translated into comprehension

def clwc(lista) :
return [first - sec for first, sec in zip(lista, listal::-1])]

Exercise

 Given a matrix, calculate its negative

o w N
N N N N
0 O N
N N N N

N W 00
N N N

Solution

A double loop

def negl (matrix) :
result = []
for row 1n matrix:
new row = []
for i1tem 1n row:
new row.append (-1tem)

result.append(new row)
return result

Solution

* A single loop with one interior comprehension

def neg2 (matrix) :
result = []
for row 1n matrix:

result.append([—-1tem for 1tem 1n row])
return result

Solution

* A double comprehension (which shows that you might not
want to overdo comprehension)

def neg3 (matrix) :
return [[—-1item for item in row] for row 1n matrix]

Generator Comprehension

* We can use comprehension on generators
e (Called generator expressions

e (Generators are defined with round parentheses
squares = (n**2 for n in range(l, 100))

>>> next (squares)

1

>>> next (squares)

4

>>> next (squares)

9

>>> next (squares)

16

>>> next (squares)

Traceback (most recent call last):

File "<pyshell#36>", line 1, in <module>

next (squares)

Stoplteration

Generator Comprehension

* The generator expression can be called with next()
e However, what if we want an infinite generator?

 Could define a generator the old fashioned way

def squaresl () : >>> a = squaresl()
n=0 >>> (') :
while True: print(next(a))
n+=1
vield(n**2) 1
4
9
16
25
36

49

Generator Comprehension

* Or use generators defined in itertools

import 1tertools
squares2 = (n**2 for n in 1itertools.count(l,1))

>>> :
print(next(squares2))

16
25
36
49

64
Q1

Generator Comprehension

e WHY?
e Assume you want to process a huge set of data
* You need to create intermediate results

* |[f you use lists, they eat up memory

* |[f you use generators, they don't

And now for something
completely different

Copying Data Structures

e Copying and assignment are two different things

Copying Data Structures

e Copying and assignment are two different things
* \We have an object a
a = set(l, 2, “one”)
e Weassignatob

 But the two objects are still linked:

Copying Data Structures

e Copying and assignment are two different things

a = set([1l, 2, "one"])
print (a)

b = a

print (b)

Now we change set a
a.remove ("one")

Which also changes set b
print (b)

>>>
>>>
i1,
>>>
>>>
>>>
i1,

>>>

i1,

a=4{1,2,"one"}
a

2, 'one'}

b = a

a.remove("one™)
a

2}
b

2}

Copying Data Structures

e Copying and assignment are two different things
* Here is what happens
* |n Python, names point to objects

E gl 7 Conel)

e Assigning adds a name to the same object

Copying Data Structures

e Copying and assignment are two different things

e Since there is only one object, | can manipulate the
object through either name

E >

m/

<

Copying Data Structures

e Copying and assignment are two different things
e |If | want to copy, | need to do so explicitly
lista = [1, 2, "three", [4,5]]

listb = [x for x 1n lista]
listal[2] = 3

>>> lista = El, é, "three", [4,5]]

print (lista) >>> listb = [x for x in lista]
: : >>> lista[2] = 3
print (1listb) >>> lista
[1, 2, 3, [4, 5]1]
>>> listb

[1, F, "three', [4, 5]]
* Now changes to one do not change the other!

Copying Data Structures

e Copying and assignment are two different things
* One can use slices to copy lists

o listb = 1listal[0:4]

Copying Data Structures

 Copying becomes difficult if we have compound
objects

e E.g.: Alist which contains lists, sets, ...
e Shallow copy:

 Resulting copies have shared elements

Copying Data Structures

e Example: A matrix as a list of rows

e Create zero row by multiplying list with an integer

. 1o, 0, 0, 01,

* which is not entirely false

Copying Data Structures

* We can get the elements as we should
matrix = 3*] 4*[0]];

pr1nt(matr1x[3][2])§

matrlx = 3*[4*]
§matrix[3][2] = 5

 But now we see that we got three times the same row

Copying Data Structures

matrix = 3*[4*[0]]
print (matrix)
matrix|[2][3] = b
print (matrix)

RESTART: /Users/tjschwarzs j/Google Drive/AATeaching/Python/Programs/copying.py

[[OI OI OI O]I [OI OI OI O]I [OI OI OI O]]
o, o, o, >}, (o, o, o, 5], 0, 0, 0, S]]

Copying Data Structures

e How can we do this:
* Need to construct the zero rows independently
e Use e.g. list comprehension

matrix = [[0 for in range(4)] for 1 in range (3)]

Copying Data Structures

 Shallow copy: Assume we have

lista = [1, 2, [3,4,5]]

* We create a shallow copy by

1, 2, [3, 4, S]]

lista |
listal:]

listb

 But here is what is happening

l'1sta

irsEb - [1,2, 7

lista (1, 2, [3, 4, 5]]
listb = listal:]

The two lists still share a component. We can change this
component 1n one list and change 1t 1in the other one as well.

Copying Data Structures

* We have two copies of the list, but the third element are
two different names for the same object

lista > [1121 S]

1ista

ligeb
lista (1, 2, [3, 4, 5]]
listb listal:]

Copying Data Structures

* |n consequence, | can alter the same element in the list
which is element number 2

lista = [1, 2, [3, 4, 5]]
listb = listal:]
listal[2][0] = o

print (lista)
print (listb)

e prints out

Copying Data Structures

* | need to use a deep copy
e Easiest:

e Use the module copy
e Use copy.deepcopy (object) for deep copying

e Use copy.copy (object) for shallow copying

Copying Data Structures

 This is a famous Python gotcha

e Behavior is not intuitive.

