
Simple Case Study
Thomas Schwarz, SJ

Data Analytics Process
• Discovery phase: what data do we need

• Data preparation phase: Cleaning

• Modeling planning phase: how to go about dealing with
the data

• Model building phase: build the models

• Communication phase

• Operationalization: build process into production

Data Gathering
• Use Kaggle as a source of data

• https://www.kaggle.com/paultimothymooney/denver-
crime-data/

• This is a huge file.

Understanding the Data
• Read supporting information

• Look at the first lines of the file

• There is a heading and examples

def head():
 with open('crime.csv') as infile:
 for _ in range(10):
 print(infile.readline())

Understanding the Data

Transforming the data
• We can look at the headers

• "INCIDENT_ID","OFFENSE_ID","OFFENSE_CODE"
,"OFFENSE_CODE_EXTENSION","OFFENSE_TYPE_I
D","OFFENSE_CATEGORY_ID","FIRST_OCCURRENC
E_DATE","LAST_OCCURRENCE_DATE","REPORTED_
DATE","INCIDENT_ADDRESS","GEO_X","GEO_Y",
"GEO_LON","GEO_LAT","DISTRICT_ID","PRECIN
CT_ID","NEIGHBORHOOD_ID","IS_CRIME","IS_T
RAFFIC"

Transforming the data
• Notice what we could do:

• The incidents are geo-coded

• We can use this to overlay data points on a map of
Denver

• We can determine influence of neighborhood on crimes

• We will wait with this until we understand matplotlib
better

• The incidents are time-stamped

• We can look at the relationship between time and
incidents

Transforming the data
• Dealing with time stamps

• Core Python has a datetime module that allows us to
create and calculate with dates and times

• Comes with a strptime() methods that needs a
description of the format

• This is because there are lot of different time formats

• The am/pm format is one of the worst

Transforming the data
• In our case:

• The relevant time is the first time stamp in column 6

• This took quite a while to get right

dati = datetime.strptime(contents[6], "\"%m/%d/%Y %I:%M:%S %p\"")

Transforming the data
• We can also do so 'manually':

def translate(hour, ampm):
 hour = int(hour)
 if hour == 12 and ampm == 'AM':
 return 0
 if hour == 12 and ampm == 'PM':
 return 12
 if ampm == 'PM':
 return hour
 else:
 return hour+12

Transforming the data
def getdate(astring):
 astring = astring.strip('"')
 date, time, ap = astring.split()
 month, day, year = date.split('/')
 hour, minute, second = time.split(':')
 #print(year, month, day, hour, minute, second)

 return datetime(int(year),
 int(month),
 int(day),
 translate(hour, ap),

Selecting the Data
• Assume we only want to look at traffic problems in

Denver

• First question: When do traffic accidents happen?

• Notice: Presumably winter weather (snow & ice) are
important, so we should distinguish between winter
month and the rest of the year

• We look up the offense code and find that all traffic
related incidents have codes between 15

Selecting the Data
• Write down all time stamps of traffic related incidents

def select_vehicular():
 traffic = []
 with open('crime.csv') as infile:
 infile.readline()
 for line in infile:
 contents = line.split(',')
 dati = getdate(contents[6])
 code = int(contents[2].strip('"'))
 if 5400 <= code <= 5499:
 traffic.append(dati)
 return traffic

Selecting the Data
• Determine number of accidents during a given hour at a

given week-day

• A datetime object allows us access to the week-day and
the hour

• One is a method, the other a field

• Can use the Counter object in collections

• Because there is no need to initialize a dictionary

item.weekday()
item.hour

Selecting the Data
• Create seven counters

• For each item (a datetime) in the traffic incident list:

• Update the counter

def process_traffic(traffic):
 weekdays = [Counter() for i in range(7)]
 for item in traffic:
 weekdays[item.weekday()][item.hour]+=1
 return weekdays

Displaying the Data
• From within Pyhton, use matplotlib

• Developed from matlab interface with many add-ons

•

• If you use IDLE, need to say plt.show() at the end

• This will show all plot elements that you created

import matplotlib.pyplot as plt

Displaying the Data
• Pyplot supports many different types of graphs

• We use mostly scatter and plot

• There is even support for three-dimensions

Displaying the Data
• Create a figure with plt.figure()

• Create several line-plot elements using

• plt.plot(x-data, y-data)

• Can add a legend as a named parameter

• But we need to place the legend then

• plt.legend(loc='upper left')

Displaying the Data
def show(counters):
 weekday = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
 'Friday', 'Saturday', 'Sunday']
 f = plt.figure()
 for i, counter in enumerate(counters):
 hours = [i for i in range(24)]
 numbers = [counter[i] for i in range(24)]
 s = plt.plot(hours, numbers, label=weekday[i])
 plt.legend(loc='upper left')
 plt.show()

Homework Part 1
• Do something with the Denver crime base

• Example:

• Smooth the traffic data

• Use a different type of crime and show how it
depends on week-day and time

Homework Part 2
• The curse of dimensionality:

• Use Monte Carlo in order to determine the volume of
an -sphere of radius and of radius

• As the number of dimensions becomes higher and
higher:

• More points are near the boundary than the center

n 1 1 − δ

n

