Encodings in Python

Thomas Schwarz, SJ

Encodings

* |Information technology has developed a large number of
ways of storing particular data

* Here is some background

wttes - oot Sectee NTF il

R

e I8 Sesth Nevgeten View e ptitrs Window Hely
A - RBARDT A2 * 9
r T (oo

. & N

Using a forensics tool (Winhex) in order
to reveal the bytes actually stored

Encodings

e TJeleprinters
e Used to send printed messages
 Can be done through a single line

e Use timing to synchronize up and down values

Encodings

e Serial connection:
e \oltage level during an interval indicates a bit

e Digital means that changes in voltage level can be
tolerated without information loss

voltage
A

fTo0oo017T170171T71T7T 0000170707100

time

Encodings

e Parallel Connection
e (Can send more than one bit at a time

e Sometimes, one line sends a timing signal

Encodings

e Sending
e 1000
e 0100
e 1100
e 0100

e Small errors in timing and
voltage are repaired
automatically

nonnonnnonmg

time

717010101010 17T071T01T0101O01

voltage line 0

N0 1 A0

tT0o100011717001 7170117001711

time

voltage line 1

|1 000 nc

| time
o1 1171000701770 170171001°01

voltage line 2

[O O N

time

O0071T0000171T000001T0O00O0T1O

voltage line 3

|

I ?/me
oooot1r11117100000117 11100

Encodings

* Need a code to transmit letters and control signals
e Emile Baudot’s code 1870
5 bit code

* Machine had 5 keys, two for the left and three for the
right hand

 Encodes capital letters plus NULL and DEL

 Operators had to keep a rhythm to be understood on
the other side

Encodings

* Many successors to Baudot’s code
e Murray’s code (1901) for keyboard

* Introduced control characters such as Carriage
Return (CR) and Line Feed (LF)

e Used by Western Union until 1950

Encodings

e Computers and punch cards
* Needed an encoding for strings
e EBCDIC — 1963 for punch cards by IBM
 8b code

W i e o i«;ir:-‘.',;‘
6 e it

Encodings

* ASCII — American Standard Code for Information Interchange — 1963
* 8b code

* Developed by American Standard Association, which became
American National Standards Institute (ANSI)

* 32 control characters

* 91 alphanumerical and symbol characters

* Used only 7b to encode them to allow local variants
* Extended ASCI!

* Uses full 8b

* Chooses letters for Western languages

Encodings

e Unicode - 1991

* “Universal code” capable of implementing text in all
relevant languages

e 32b-code

* For compression, uses “language planes”

Encodings

e UTF-7 — 1998
* /b-code
* |Invented to send email more efficiently
e Compatible with basic ASCII

* Not used because of awkwardness in translating 7b
pieces in 8b computer architecture

Encodings

e UTF-8 — Unicode
e Code that uses
* 8b for the first 128 characters (basically ASCII)
* 16b for the next 1920 characters

e Latin alphabets, Cyrillic, Coptic, Armenian, Hebrew, Arabic,
Syriac, Thaana, N’Ko

o 24b for
* Chinese, Japanese, Koreans
e 32b for

* Everything else

Encodings

* Numbers
 There is a variety of ways of storing numbers (integers)
* All based on the binary format

e For floating point numbers, the exact format has a large
influence on the accuracy of calculations

e All computers use the IEEE standard

IEEE 754 Standard for Floating Point

+ Single precision format

g |E:Biased |Z

Exponent | Significand 23 bits
8 bits

30

sign

Bit index

on format
g |E:Biased |Z
4 | EXponent | Significand 20 bits
~ |11 bits

Bit index

Significand continued 32 bits

Python and Encodings

* Python “understands” several hundred encodings
* Most important
e ascii (corresponds to the 7-bit ASCII standard)
e utf-8 (usually your best bet for data from the Web)
e |atin-1

e straight-forward interpretation of the 8-bit extended
ASCI!

e never throws a “cannot decode” error

* No guarantee that it read things the right way

Python and Encodings

If Python tries to read a file and cannot decode, it throws
a decoding exception and terminates execution

We will learn about exceptions and how to handle them
soon.

For the time being: Write code that tells you where the
problem is (e.g. by using line-numbers) and then fix the
iInput.

Usually, the presence of decoding errors means that you
read the file in the wrong encoding

Using the os-module

 With the os-module, you can obtain greater access to the
file system

* Here is code to get the files in a directory

import os

def list files(dir name) :
files = os.listdir (dir name)
for my file 1n files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Example")

Using the os-module

import os

Get a list of file names in the directory

def list files(dir namc
files = os.listda
for my file 1in files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Example")

Use the os-module

import os

def list files(dir name):
files = os.listdir (dir name)
for my file 1in files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Example")

Creating the path name

to the file

Use the os-module

import os

def list files(dir name):
files = os.listdir (dir name)
for my file 1in files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Example")

Gives the size of the file

in bytes

Use the os-module

import os

def list files(dir name):
files = os.listdir (dir name)
for my file 1in files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Exam "

Use the os-module

e Qutput:

e Note the Mac-trash file

RESTART: /Users/thomasschwa
lel4/generator.py

.DS_Store 6148

resultsl.csv 384
results@.csv 528
resultsZ2.csv 432
results3.csv 368
results4.csv 464

Use the os-module

e Using the listing capability of the os-module, we can
process all files in a directory

 Jo avoid surprises, we best check the extension

e Assume a function process a file

e QOur function opens a comma-separated (.csv) file

e (Calculates the average of the ratios of the second
over the first entries

Use the os-mo

ule

1.290, 12.495
2.295, 11.706
3.063, 9.083
. . 4.058, 4.112
* The process_a_file takes the file-name
—_ — 1.997, 8.833 qfﬁ
2..281, 10.032 2
0.929, 9.3731i5, 9.733 §20
o C I I 't th t- 1.858, 14.439i5, 15.820 Z;;
r r 3.022, 21.861 i1, 20.939
alculates the average ratio 3022, 2186111, 20.939 5,
1.147, 1.093% 10.838 (8, 33.335 $°0
1.997, 8.833i 0.280i2, 37.546 F41
2.781, 10.032 i 37.029 i4, 47.130 ¢/
4.225, 9.733 1 37.459 {7, 50.559 232
5.455, 15.820 i 27.295 i3, 62.268 108
6.151, 20.939 | 34.994 i5, 68.175 93
6.573, 26.547 i 37.458 i6, 76.877 +18
8.058, 33.335: 66.393 17, 84.574 220
9.132, 37.546 i 62.255 i4, 93.389 p°0
10.474, 47.130} 84.116 i6,103.726 2/8
11.207.0..50.559.5.87.145 i7,111.623 217
. . 1933 15,119.797 }2?
def process a file(file name): o6y 10149 906
: : : : .947 i9,154.047
with open(file name, "r") as infile: 509 §0, 169502
— .398 i6,178.782
_ .806 i0,190.953
suma 0
, 716 i3,214.514
nr llnes — O .198 i6,232.827
— .358 i0,245.687
: : . : 137 i0,256.452
for line 1n infile: 77270, 849
. srrwd3, 288.109
nr llneS+:1 33.288,303.786

array = line.split(',")

return suma/nr lines

suma+= float (array([l])/float (array[0])

Use the os-module

* Jo process the directory
e Get the file names using os
* For each file name:
e Check whether the file name ends with .csv
e (Call the process_a_file function

e Print out the result

Use of the os-module

def process files(dir name):

files = os.listdir(dir name)
for my file in files:
1f my file.endswith('.csv'):

print (my file, process a file(
“Example/{}”.format (my file)))

Using format to create the
file name

Use of the os-module

lel4/generator.py

>>> process_files('Example’)
resultsl.csv 5.2819632072675295
results@.csv 5.920382285263983
resultsZ2.csv 5.75068633738946606
results3.csv 4.801235259621119
results4.csv 6.409464135625922

Encodings

* Whenever you see strings:
 Think about encoding and decoding
e Example: the &
e '2' .encode('utf-8"'") .decode('latin-1")
* gives
o "Ak'

 Mixing encodings often creates chaos

Encodings

 Python is very good at guessing encodings
* Do not guess encodings

e E.g.: Processing html: read the http header:

® Content-Type: text/html; charset=utf-8

* |f you need to guess, there is a module for it:

® chardet.detect (some bytes)

Encodings

* Thinking about encoding and decoding string allows easy
internationalization

Bytearrays

 On (rare) occasions, you might want to work with bytes
directly

 Read the file in binary mode

 Bytearray allows you to manipulate directly binary data

 bytes have range 0-255

® content = bytearray(infile.read())

