
For Loops
Thomas Schwarz, SJ

Preview : Lists
• A list is an ordered collection of elements

• Uses brackets []

• An empty list []

• A list with one element [2]

• A list with two elements [2,3]

Preview : Lists
• Python lists can have elements of different types

• my_list = [1, 1.0, 'one']

For statement
• A for statement does something for everything in a list-

like structure

• Key word is for

• element is a variable that takes on repetitively all
elements of the list

• List-like is anything that is like a list (e.g. a list)

for element in list_like:

do something with elementIndent

For statement
• Example:

• A table to convert from rupees to euros

RUPEES_TO_EUROS = 0.01184638023
for rupees in [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000]:
 euros = rupees*RUPEES_TO_EUROS
 print(rupees, '(IR) corresponds to', round(euros, 2), '€')

For statement
• Many times we just want consecutive numbers

• These are generated through range

• Python 1,2: Range generates a list

• Python 2: xrange generates next number on demand

• Python 3: range gives a “range” object

• Example for efficiency can be the enemy of ease of
understanding

• For the time being: a range is just a list of numbers

For statement
• For statement with range:

• Range is equivalent to a list [0, 1, …, n-1]

for i in range(n):

Block of StatementsIndent

For statement
• Why do we start with 0?

• In early CS, for loops were used over offsets into
memory

• Better start with 0 then to not have to distinguish
between a memory region and the preceding
memory location

• And range(n) should have n elements, so we stop
with n-1

For statement
• Example:

• Calculate the sum

• Need an accumulator to keep the partial sums

• This accumulator needs to be initialized to 0

• We update this accumulator by adding to it repeatedly

• Can use the += statement

1000

∑
i=0

1
1 + i2

1
1 + i2

For statement
• x += 7

• is a shortcut for

• x = x+7

• Same goes for x/= 2, x*=2, x-=2

For statement
• Notice that the last value for i is 1000, therefore we need
range(1001)

• Refer to 1001 as the stop value

For statement
• First draft of code:

• Disregards principles of numerical analysis

• First addend is 1

• Second addend is 1/5

• …

• Last addend is 1/1,000,001

accumulator = 0
for i in range(1001):
 accumulator += 1/(1+i**2)
print(accumulator)

For statement
• First draft of code

• We are adding small numbers to big numbers

• Can expect loss of precision

accumulator = 0
for i in range(1001):
 accumulator += 1/(1+i**2)
print(accumulator)

Ranges
• Ranges are quite flexible

• If there is a single variable, then that variable is the stop
value

• If there are two variables, then the first is the start value

• and the second the stop value

• If there are three variables, then the first one is the start
value

• the second the stop value

• and the third the stride

Ranges
• Example:

• prints

for i in range(3):
 print(i)

0
1
2

Ranges
• Example:

• prints

• Start value is 1, stop value is 4, i.e. last value is 3

for i in range(1, 4):
 print(i)

1
2
3

Ranges
• Strides:

• What gets added to the loop variable

• Example

• First value for i is the start value 2

• print out 2

• Then add 3 (the stride to the current value of i)

• print out 5

• Then add 3 again

• print out 8

• Then add 3 again

• This gives i=11, which is ≥ 9, the stop value, so we stop the loop

for i in range(2,9,3):
 print(i)

Ranges
• Example:

•

• prints out

•

for i in range(2,9,3):
 print(i)

2
5
8

Ranges
• Strides can be negative

• Example:

•

• Stop before we reach 0, i.e. at 1

for i in range(10,0,-1):
 print(i)

10
9
8
7
6
5
4
3
2
1

Ranges
• Resumen:

• range takes up to three parameters:

• Start

• Stop

• Stride

For statement
• Now we can calculate the sum in a safer way

• modifies result slightly using stride -1

• We start with i = 1000

• We finish with i = 0

• Therefore: stop value is -1

accumulator = 0
for i in range(1000, -1, -1):
 accumulator += 1/(1+i**2)
print(accumulator)

