Nested For Loops

Thomas Schwarz, SJ

Nesting

 \We can use nested loops

 E.g. 1o solve mathematical puzzles or diophantine
equations

* Where we just try out all possibilities

 Nota bene: Diophantes was preceded by Indian
mathematicians

Diophantine Equations

* A diophantine equation is a polynomial equation with
variables in the integers

e E.g.x* —y2 = 7

 Has obviously trivial solutions
e xany number,y=x,z =20

* We exclude those by restricting ourselves to
x>0,y>0,z>0

Diophantine Equations

e This still leaves us with an infinite number of number
combinations

e So, we arbitrarily limit ourselves to numbers < 1000

e First attempt:

for x 1in range(1,1000) :
for y in range(1,1000) :
for z in range(1,1000) :
1f xX**2-y**¥2 == z**3;:
print (x, vy, 2Z)

Diophantine Equations

e Question:

* How often are we executing the if-statement?
e 999 times pery
e 999 X 999 per x

e 999 X 999 X 999 total

e which is a lot (almost 1000 million)

for x 1n range(1,1000) :
for y in range(1,1000) :
for z 1n range(1,1000) :
1f X**2-y**¥2 == z**3;:

print (x, y, 2Z)

Diophantine Equations

 We can reduce this by observing that for a solution

e 0 <x < 1000
e O<x<y

e O<z<x

e Now:

for x 1n range(1,1000) :
for y 1n range(l,x):
for z 1n range(1l,x):
1f X**2-y**¥2 == z**3:
print (x, vy, 2Z)

Diophantine Equations

e Number of executions of the if-statement is now:

e Foreachx

e x—DXxx-1)
999

_ Total number of times Z (x — 1) is 331,835,499 or

i=1
about a third of the previous value

e But still takes noticeable time

* And we get a bunch of solutions with absolutely no
insight

Cryptarithmetic Puzzles

e A classic example:

SEND
+MORE

MONEY

e D, E, M, N, O, R, S, Yaredigits
* |n fact, they are different digits

e And S and M are non-zero

Cryptarithmetic Puzzles

SEND
e \We can of course deduce solution
u uce solutio +MORE
e E.g. M has to be one
MONEY

e Therefore, § = 9

Cryptarithmetic Puzzles

* QOur “brute force” algorithm could just start out with

° for d 1n range (10) :

for e 1in range (10) :
for n 1n range (10) :

#Test all conditions here

Cryptarithmetic Puzzles

 This just guarantees a lot of unnecessary tests

e Easier to exclude cases as soon as possible

 That all variables have to be different is a good
candidate for early tests

for d in range(10) :
for e 1in range (10) :
1f el!l= d:
for n in range (10) :
1f n!l=e and n!=d:

#Test here
#Print out result

Cryptarithmetic Puzzles

e Now we need to deal with arithmetic!
 Adding involves carries
* Eg 7

+ 8
15

e Carryoutofa+ bis(a+ b)//10
e Resulting digit is (a + b) % 10

Cryptarithmetic Puzzles

for d in range (10):
for e in range(10) :
if not e ==
for m in range(1,10):
if not m==d and not m==
for n in range(10):
if not n==m and not n==e and not n==d:
for o in range (10):
if not o==n and not o==m and not o==e and not o==d:
for r in range(10):
if not r==n and not r==0 and not r==m and not r==e and not r==d:
for s in range(1,10):

if s !'= n and s!=r and s!= o and s!=m and s!=e and s!= d:
y = (d+e)%10
if y!=s and y!= r and y!=o0 and y!=r and y!=s and y!= d and y!=e and y!=m:
cl = (d+e)//10
if == (n+r+cl)%10:
c2 = (n+r+cl)//10
if n == (e+o0+c2)%10:
c3 = (e+o+c2)//10
if (s+m+c3)%10 == o and (s+m+c3)//10 == m:
print (' ', s, e, n, d)

print('+', m, o, r, e)
print (m, o, n, e, V)

