
Scopes
Thomas Schwarz, SJ

Local and Global Variables
• A Python function is an independent part of a program

• It has its own set of variables

• Called local variables

• It can also access variables of the environment in which
the function is called.

• These are global variables

• The space where variables live is called their scope

Examples
• a and b are two global

variables

• In function foo:

• a is global, its value
remains 3

• In function bar:

• b is local, since it is
redefined to be 1

a=3

b=2

def foo(x):

 return a+x

def bar(x):

 b=1

 return b+x

print(foo(3), bar(3))

Examples

• Calculating

• Known as the nth harmonic number

1 +
1
2

+
1
3

+ … +
1
n

Examples
• Solution:

def harmonic(n):

 suma = 0

 for i in range(1,n+1): #1, 2, 3, ..., n

 suma += 1/i

 return suma

Examples
• Two-dimensional harmonic

• A slightly contrived example

+

+

+

+

1
1

+
1
2

+
1
3

+
1
4

+ … +
1
n

1
2

+
1
3

+
1
4

+
1
5

+ … +
1

n + 1

1
3

+
1
4

+
1
5

+
1
6

+ … +
1

n + 2

⋮

1
m

+
1

m + 1
+

1
m + 2

+
1

m + 3
+ … +

1
m + n − 1

hn,m =

Examples
• We use functions to make our code more understandable

• Write a helper function that calculates each row

• Or each column, because the construct is symmetric

• Helper function calculates
1
r

+
1

r + 1
+

1
r + 2

+ … +
1

r + n − 1

Examples
• For a row:

• addends, starting with 1 over 1, 2, 3, …,

• Call this

n m

1+addend

def gen_harmonic(n, addend):

 suma = 0

 for i in range(n):

 suma += 1/(i+addend)

 return suma

Examples
• Then we just add up rows:

def double_harmonic(n,m):

 suma = 0

 for i in range(1, n+1):

 suma += gen_harmonic(n, i)

 return suma

Examples
• We have two functions, both use variable

• But despite sharing the same name and being active at
the same time

• They are different

• Because they are in different scopes

• We can see that this makes things easier:

• We do not need to remember all variable names that
we used

suma

Examples
def gen_harmonic(n, addend):

 suma = 0

 for i in range(n):

 suma += 1/(i+addend)

 return suma

def double_harmonic(n,m):

 suma = 0

 for i in range(1, n+1):

 suma += gen_harmonic(n, i)

 return suma

Preview of Scoping:

The global keyword

• But sometimes we do want to share variables

•

• Here, b is a variable defined outside of func

• Because it is not defined in func

• But what if we want to change it in func ?

• If we just write

def func(a):

 return a + b

def func(a):

 b = 1

 return a + b

Preview of Scoping:

The global keyword

• Then we create a “local” variable b

• Thus, the “global” b has not changed

b = 3

def func(a):

 b = 1

 return a + b

This b is different

From this one

Preview of Scoping:

The global keyword

• If we want to change a global variable in a function

• We use the keyword global

b = 3

def func(a):

 b = 1

 return a + b

A global and a local b

b = 3

def func(a):

 global b

 b = 1

 return a + b

Only one b

Preview of Scoping:

The global keyword

• Here is an only slightly artificial example

• We want to count how often a function is called

count_called = 0

def func():

 count_called += 1

 return

func()

func()

func()

print(count_called)

Traceback (most recent call last):

 File "/Users/thomasschwarz/Documents/My
website/Classes/BPMumbai2022/Modules/Lists/
scope_examples.py", line 25, in <module>

 func()

 File "/Users/thomasschwarz/Documents/My
website/Classes/BPMumbai2022/Modules/Lists/
scope_examples.py", line 22, in func

 count_called += 1

UnboundLocalError: local variable
'count_called' referenced before assignment

FAILS!

Preview of Scoping:

The global keyword

• Here is an only slightly artificial example

• We want to count how often a function is called

count_called = 0

def func():

 global count_called

 count_called += 1

 return

func()

func()

func()

print(count_called)

= RESTART: /Users/thomasschwarz/Documents/My
website/Classes/BPMumbai2022/Modules/Lists/
scope_examples.py

3

Works!

Example
• In foo:

• A local variable b

• A global variable a

• The value of a changes by executing
foo()

a = 1

b = 2

def foo():

 global a

 a = 2

 b = 3

 print("In foo:" , "a=", a, " b=", b)

print("Outside foo: " ,"a=", a, " b=", b)

foo()

print("Outside foo: " ,"a=", a, " b=", b)

##Outside foo: a= 1 b= 2

##In foo: a= 2 b= 3

##Outside foo: a= 2 b= 2

Scoping
• Scoping is definitely an advanced topic

• The take-home is:

• Don’t ever, ever use global variables

• Unless you really need to.

• Under most circumstances, you should pass variables as
arguments.

• Python Philosophy: Rules are followed by
convention, there is no enforcement

• Because sometimes you need to make exceptions

