Arithmetic
EXpressions

Using IDLE

Arithmetic Expressions

* Numeric Literals
 We have two different types of numerical values
* Integers (positive or negative)
* Floating point values

e Written in decimal or scientific notation
® 5. 32e-4
e 0.000532

Arithmetic Expressions

e Python expressions have a “type”

* Necessary because internal representation differs

* Most important
* int -- an integer
* float -- a floating point number
e complex -- a complex floating point number
e str-- astring

* bytes -- a “raw” string of bytes

Arithmetic Expressions

* The keyword type will reveal the type of an expression

type (3.14)
<class 'float'>

type (-12)

<class 'int'>

type('hello')
<class 'str'>

type(b'hello')
<class 'bytes'>

Arithmetic Expressions

e Arithmetic expressions use operators
* unitary: - for minus
* binary: +, -, 7,
 Division: / yields always a floating point
®* 6/2 gqgives 3.0
* “Floor” division: // yields always an integer

* |f necessary, rounded down

6//2 2 3//4

3 - 0

Arithmetic Expressions

e Arithmetic expressions use operators
 EXxponentiation uses two asterisks
e Example: Square-root of 0.75
e 0.75**0.5
® 0.80060254037844386
e Can yield complex numbers
o (-1.25)**0.5

® (6.845983728302534e-17+1.1180339887498
9957)

Arithmetic Expressions

* Binary operations

 Python knows certain operations on the binary
representation of numbers

e | bit-wise or
e A Dbjt-wise xor
e & bit-wise and

e Can be very useful, but we will not look at them in this
class

e Just be aware of their existence

Arithmetic Expressions

* To combine expressions use
e Parentheses (...)
* Precedence rules
e BODMAS

* Brackets, Order, Division/Multiplication, Addition/
Subtraction

e |Left associativity:
®* 5*b/c becomes (a*b) /c

e Buta**b**c isa** (b**c)

Expressions with Strings

e A string is a piece of text
* |ndicated with quotation marks

 Python allows single, double quotation marks as long as
the string does not contain newlines

e Example:

e 'hello world'

e "Python 1s cool"

Expressions with Strings

* We can concatenate strings

>>> "hello" + "world"
'helloworld!'

* And we can multiply a string with a positive integer

c>>> '"JA'%20
fJA'

Expressions with Strings

e This is interesting:

e The interpretation of the asterisk * depends on the
operands

 But we cannot multiply a string with a string

>>> 'hello'x'world'
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
'hello'*'world'
TypeError: can't multiply sequence by non-int of type 'str'

* This results in an error called a “type error”

