
Floating Point
Precision

Excursus

Representation of Numbers
• Unsigned integers are traditionally represented as a string

of zeroes and ones in the 2-adic system

• E.g. 0100 0111 =

• Integers need to incorporate a sign ±

• Explicit sign (“signed magnitude representation”)
leads to inefficient hardware addition / subtraction

• Use two’s complement or one’s complement

1 × 26 + 1 × 22 + 1 × 21 + 1 × 20 = 64 + 4 + 2 + 1 = 71

Representation of Numbers
• In hardware, integers take up 16, 32, 64, or even 128 bits

• Limits range to

• 32768 (16 bits)

• 2147483648 (32 bits)

• 9223372036854775808 (64 bits)

• 170141183460469231731687303715884105728 (128b)

• But larger integers are used

Representation of Numbers
• Overflow:

• An result of an addition / subtraction / multiplication
exceeds the range

• Depending on platform, can be misinterpreted:

• E.g.: Adding two large numbers results in a negative
number

Representation of Numbers
• Arbitrary precision integers

• Overflow happens because results of calculations do
not fit into the number of bits assigned for integers

• This can be a function of the architecture

• Arbitrary precision integers combine storage for
several integers to store a single integer

• Python uses arbitrary precision integers

Representation of Numbers
• Example:

Representation of Numbers
• Example:

• Double click on the message

• We just calculate .265536

Representation of Numbers
• Python does this automatically

• Result: Integer calculation in Python are always exact

• Nota Bene:

• There are Python modules that do not use arbitrary
precision integers

Representation of Floating
Point Numbers

• Rational numbers are represented as floating point
numbers

• Stored as

• You should know this as the scientific notation for the
decimal numbers

• E.g. Planck's constant

sign significant × baseexponent

6.62607004 × 10−34 m2kg
sec

Representation of Floating
Point Numbers

• The significant and the exponent can store limited
information

• This means that some numbers cannot be represented
exactly

• In the decadic system:

• 1/17 is
0.076923076923076913076923076923076923

• with an infinite repetition of the same pattern

• Or = 3.141592653589793…π

Representation of Floating
Point Numbers

• Computers (almost universally) use the binary system

• But we have the same phenomena

• Consequences:

• Normal mathematical identities are no longer true

• E.g.

• E.g.

x(y − z) = xy − xz

(x)2 = x

Representation of Floating
Point Numbers

• Python (Cython):

• Uses 8 bytes or 64 bits to represent a floating point
number

• Industry standard for high precision floating point
numbers

• There are packages for C++ or Java available for higher
precision numbers

• Python similarly has wrapper modules that make higher
precision available

Representation of Floating
Point Numbers

• In theory, it is impossible to use exact precision for
floating point calculations

