Floating Point
Precision

Excursus

Representation of Numbers

* Unsigned integers are traditionally represented as a string
of zeroes and ones in the 2-adic system

e E.g.0100 0111 =
I X204+ 1x224+1x2'+1x2°=64+4+2+1=71

* |ntegers need to incorporate a sign +

e Explicit sign (“signed magnitude representation”)
leads to inefficient hardware addition / subtraction

e Use two’s complement or one’s complement

Representation of Numbers

* |n hardware, integers take up 16, 32, 64, or even 128 bits
e Limits range to

e 32768 (16 bits)

e 2147483648 (32 bits)

e 0223372036854775808 (64 bits)

e 170141183460469231731687303715884105728 (128b)

e But larger integers are used

Representation of Numbers

e Qverflow:

e An result of an addition / subtraction / multiplication
exceeds the range

 Depending on platform, can be misinterpreted:

 E.g.: Adding two large numbers results in a negative
number

Representation of Numbers

* Arbitrary precision integers

e Overflow happens because results of calculations do
not fit into the number of bits assigned for integers

e This can be a function of the architecture

e Arbitrary precision integers combine storage for
several integers to store a single integer

 Python uses arbitrary precision integers

Representation of Numbers

e Example:

Representation of Numbers

e Example:

 Double click on the message

>>> 2%%k2%%k2%%k2%%2
20035299304068464649790723515602557504478254755697514192650169737108940595563114
89506130880933348101038234342907263181822949382118812668869506364761547029165041
91635158796634721944293092798208430910485599057015931895963952486337236720300291
95921561087649488892540908059114570376752085002066715637023661263597471448071117
15880914135742720967190151836282560618091458852699826141425030123391108273603843

87644904320596037912449090570756031403507616256247603186379312648470374378295497
R7700R1ANLATLL1RRDRAQ2T11R1024LRROROTR222D1QR221A02021A2001 ADRARATATARARTALATROR

e We just calculate 29°°3°,

Representation of Numbers

* Python does this automatically
* Result: Integer calculation in Python are always exact

e Nota Bene:

 There are Python modules that do not use arbitrary
precision integers

Representation of Floating
Point Numbers

* Rational numbers are represented as floating point
numbers

» Stored as sign significant X base€XPonent

e You should know this as the scientific notation for the
decimal numbers

2K
. E.g. Planck's constant 6.62607004 x 10~* ™o
sec

Representation of Floating
Point Numbers

* The significant and the exponent can store limited
information

* This means that some numbers cannot be represented
exactly

* |n the decadic system:

e 1/17 is
0.076923076923076913076923076923076923

e with an infinite repetition of the same pattern

e Orm=3.141592653589793...

Representation of Floating
Point Numbers

e Computers (almost universally) use the binary system
 But we have the same phenomena

e Consequences:

* Normal mathematical identities are no longer true
e Eg.x(y—2) =xy—XxZ
e E.o. (\/;)2 =X

'>>> (3%%0.5)%%x2
|2.9999999999999996

l

Representation of Floating
Point Numbers

e Python (Cython):

e Uses 8 bytes or 64 bits to represent a floating point
number

* Industry standard for high precision floating point
numbers

 There are packages for C++ or Java available for higher
precision numbers

 Python similarly has wrapper modules that make higher
precision available

Representation of Floating
Point Numbers

* |n theory, it is Impossible to use exact precision for
floating point calculations

