Floating Point Precision

Excursus

- Unsigned integers are traditionally represented as a string of zeroes and ones in the 2-adic system
 - E.g. 0100 0111 = $1 \times 2^6 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 64 + 4 + 2 + 1 = 71$
- Integers need to incorporate a sign ±
 - Explicit sign ("signed magnitude representation") leads to inefficient hardware addition / subtraction
 - Use two's complement or one's complement

- In hardware, integers take up 16, 32, 64, or even 128 bits
- Limits range to
 - 32768 (16 bits)
 - 2147483648 (32 bits)
 - 9223372036854775808 (64 bits)
 - 170141183460469231731687303715884105728 (128b)
- But larger integers are used

- Overflow:
 - An result of an addition / subtraction / multiplication exceeds the range
 - Depending on platform, can be misinterpreted:
 - E.g.: Adding two large numbers results in a negative number

- Arbitrary precision integers
 - Overflow happens because results of calculations do not fit into the number of bits assigned for integers
 - This can be a function of the architecture
 - Arbitrary precision integers combine storage for several integers to store a single integer
- Python uses arbitrary precision integers

• Example:

	=======================================	RESTART:	Shell	
>>>	2**2**2**2			
	Squaazad taxt (247 lines)			
	Squeezed text (247 lines).			
>>>				

- Example:
 - Double click on the message

• We just calculate 2^{65536} .

- Python does this automatically
 - Result: Integer calculation in Python are always exact
- Nota Bene:
 - There are Python modules that do not use arbitrary precision integers

- Rational numbers are represented as floating point numbers
 - Stored as sign significant × base^{exponent}
 - You should know this as the scientific notation for the decimal numbers
 - E.g. Planck's constant $6.62607004 \times 10^{-34} \frac{\text{m}^2\text{kg}}{\text{sec}}$

- The significant and the exponent can store limited information
 - This means that some numbers cannot be represented exactly
 - In the decadic system:
 - 1/17 is
 0.076923076923076913076923076923076923
 - with an infinite repetition of the same pattern
 - Or $\pi = 3.141592653589793...$

- Computers (almost universally) use the binary system
 - But we have the same phenomena
- Consequences:
 - Normal mathematical identities are no longer true

• E.g.
$$x(y - z) = xy - xz$$

• E.g.
$$(\sqrt{x})^2 = x$$

- Python (Cython):
 - Uses 8 bytes or 64 bits to represent a floating point number
 - Industry standard for high precision floating point numbers
 - There are packages for C++ or Java available for higher precision numbers
 - Python similarly has wrapper modules that make higher precision available

 In theory, it is impossible to use exact precision for floating point calculations