Thomas Schwarz, SJ

A simple program for quadratic equations

- Given a quadratic equation
 - $ax^2 + bx + c = 0$
- the solutions are

$$-b \pm \sqrt{b^2 - 4ac}$$

$$2a$$

- Plan:
 - Ask user to enter the three variables a, b, and c
 - But specify what is what through a print statement
 - Calculate the discriminant
 - $b^2 4ac$
 - And from there the two solutions
 - Print out the two solutions

Printing out the information and asking for the coefficients:

print("Solving a x^2 + b x + c")
a = float(input('Enter a: '))
b = float(input('Enter b: '))
c = float(input('Enter c: '))

• Now a, b, and c refer to the corresponding coefficient

- Calculating the root of the discriminant
- Calculating the two solutions

discriminant_root = (b*b-4*a*c)**0.5
sol1 = (-b + discriminant_root)/(2*a)
sol2 = (-b - discriminant_root)/(2*a)

- Alternatively, we can use the square-root function from the math module
 - This involves two steps
 - We need to *import* the math module
 - This is done by putting import math (traditionally at the top of the script)
 - Use the proper name, which is math.sqrt()
 - sqrt is the name of the function
 - and we can find it in math

• Program so far is

import math
print("Solving a x^2 + b x + c")
a = float(input('Enter a: '))
b = float(input('Enter b: '))
c = float(input('Enter c: '))

discriminant_root = math.sqrt(b*b-4*a*c)
sol1 = (-b + discriminant_root)/(2*a)
sol2 = (-b - discriminant_root)/(2*a)

- Now we need to output the solutions
 - A little bit of text can be quite useful
 - In practice, you might be the only one to execute your script, but try understanding a bare-minimum program after a few weeks
 - And if others use your script, you want to be clear

• We should print out an explanation

```
print('The solutions of the quadratic equation are')
print(sol1)
print('and')
print(sol2)
```

- A useful way to calculate the square-root of a number
 - Also known as the Babylonian method
 - But named after an Alexandrian mathematician from ca 100 B.C.E.
 - Takes an approximation to the square root and returns a better one
 - Formula for square root of *S*:

• If guess is x then a better guess is $x = \frac{1}{2}(x + \frac{S}{x})$

- Example: $\sqrt{2}$
 - Initial guess is 1

• Second guess is
$$\frac{1}{2}(1 + \frac{2}{1}) = \frac{3}{2}$$

• Third guess is

$$\frac{1}{2}\left(\frac{3}{2} + \frac{2}{\frac{3}{2}}\right) = \frac{1}{2}\left(\frac{3}{2} + \frac{4}{3}\right) = \frac{1}{2}\left(\frac{9+8}{6}\right) = \frac{17}{12}$$

- To implement this:
 - We need to explain the purpose of the algorithm
 - We need to ask the user for the number S of which we want to calculate the square root
 - We then repeatedly apply the formula to the variable containing our initial guess
 - Which for simplicities sake we set to $\frac{3}{2}$