Thomas Schwarz, SJ

Why randomness

- Used in cryptography
 - e.g. session keys, challenges, ...
- Used for simulation

Sources-of-Randomness

- True randomness is difficult
 - Hardware Random Number Generators
 - Shot Noise: a lamp shines on a photo-diode. The photons create noise in the circuit because of the uncertainty principle
 - Radioactive decay
 - Photons travelling through a semi-transparent mirror
 - Thermal noise from a resistor
 - Atmospheric noise detected by a radio receiver

Sources-of-Randomness

- Hardware Random Number Generation:
 - Translation into a given random distribution (e.g. a bit stream without correlation and 50% ones) is difficult
 - Software can be used to "extract randomness"

Sources-of-Randomness

- System data
 - Has a bad name because its randomness was overestimated in a version of Secure Socket Layer

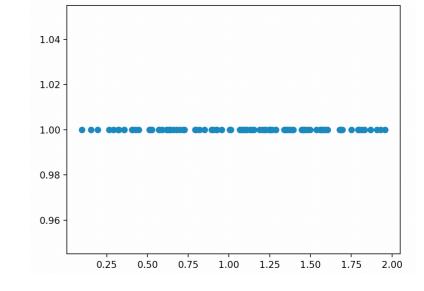
Pseudo-Randomness

- Pseudo-random generator:
 - Produce an output stream that is statistically undistinguishable from true random data
 - Usually based on a seed
 - The same seed generates the same pseudo-random numbers
 - Use some mathematics to convert the output stream to one having any random distribution

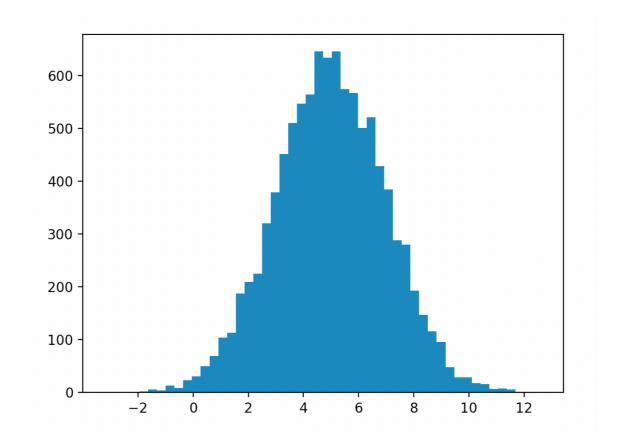
- Imported via
 - import random as rd
- The abbreviation is not quite as generally used as others

- How to get random numbers:
 - rd.random() gives a random floating point number between 0 and 1
 - 100 pts with rd.random between 0 and 1

- Generalized by rd.uniform(a,b)
 - 100 pts with rd.uniform(0,2)



- rd.normalvariate(mu, sigma) gives normally distributed values
 - Centered around mu
 - "Average" distance from center of sigma



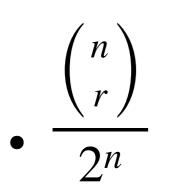
- Law of large numbers:
 - Perform an experiment with an outcome $X \in \mathbb{R}$ independently *n* times, $n \to \infty$

- mean
$$\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$$
 looks more and more normally distributed

• Mathematically:

•
$$\sqrt{n}(\bar{X}_n - \mu) \rightarrow \mathcal{N}(0, \sigma^2)$$
 in distribution

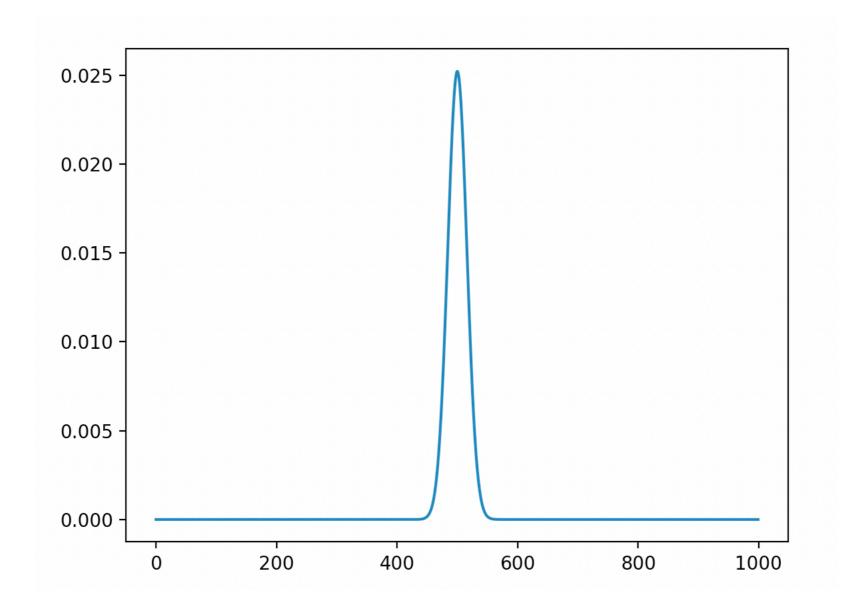
- Example: Coin toss with a fair coin:
 - Number of "heads" after *n* tosses is *x* with probability



• (number of ways of arraigning r heads over the 2^n possible arraignments)

• We can use math.comb to calculate the probability

```
import math
import matplotlib.pyplot as plt
def prob_coin_toss(nn, i):
    return math.comb(nn,i)/2**nn
nn=1000
plt.plot(range(nn), [prob_coin_toss(nn,i) for i in range(nn)])
plt.show()
```



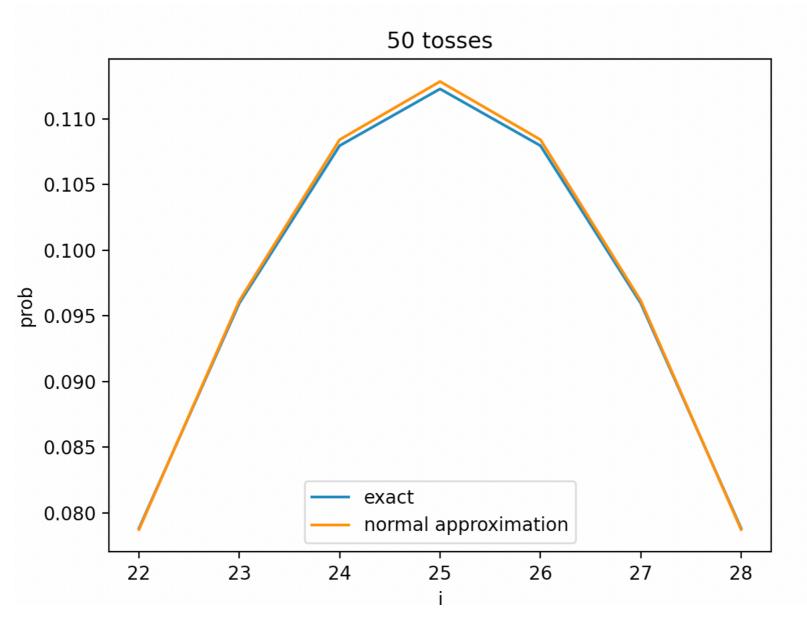
- Or we can approximate the probability with the normal distribution with mean $\mu = \frac{nn}{2}$ and $\sigma = \sqrt{\frac{nn}{4}}$
- Formula is

•
$$P(i \text{ heads}) = \frac{1}{\sqrt{2\pi \cdot \sigma^2}} \cdot \exp(-\frac{1}{2}(\frac{i-\mu}{\sigma})^2)$$

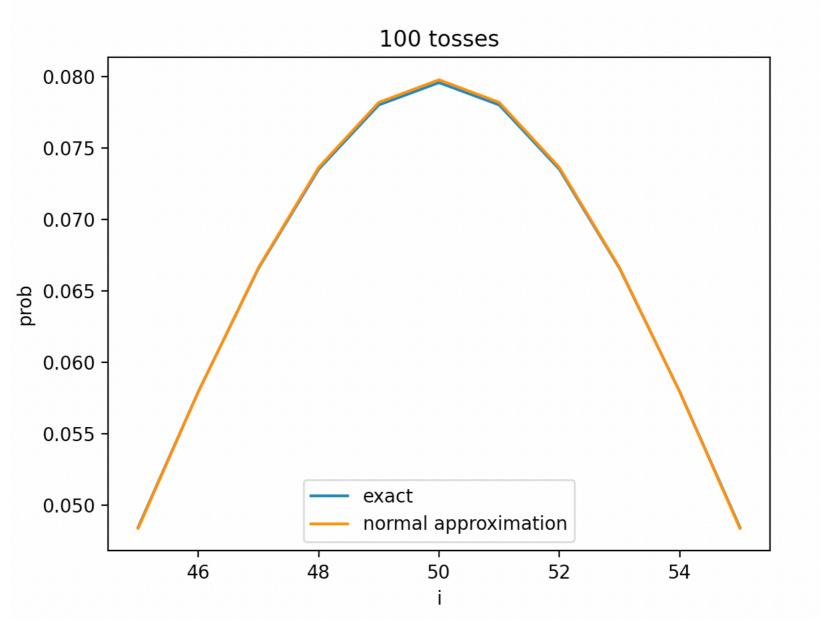
Probability according to normal distribution

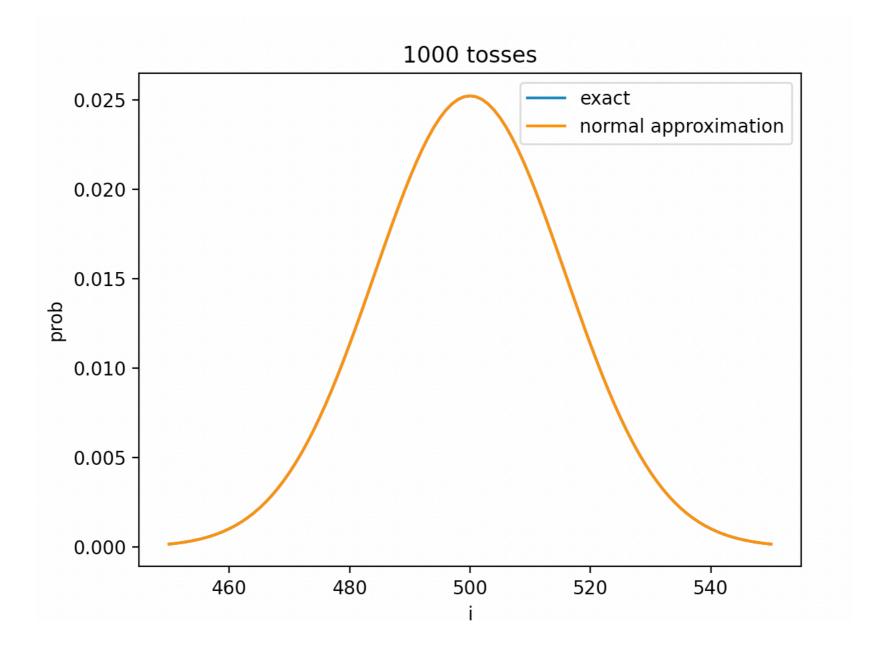
```
def normal_pdf(nn, i):
    sigma = math.sqrt(nn/4)
    mu = nn/2
    factor = 1/math.sqrt(2*math.pi*nn/4)
    exponent = -0.5*(i-mu)**2/sigma**2
    return factor * math.exp(exponent)
```

• Coin toss experiment



• Coin toss experiment

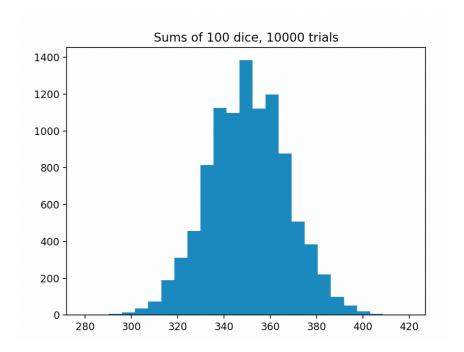




- This is why the normal distribution is so important:
 - In social sciences, a parameter with unknown probability distribution is often replaced with a normal distribution

- Python uses a sophisticated pseudo-random number generator
 - There is a trade-off between speed and unpredictability
 - Python random prefers speed and the results are not usable for cryptographic purposes.
 - For repeatability, you set the seed of the pseudo-random generator:
 - random.seed(12345)
 - The argument can also be a string:
 - rd.seed("India expect all men to do their duty.")

- Selection:
 - rd.randint(a,b) A random number (with equal probability) between a and b, both ends included
 - Example:
 - The sum of throwing hundred dice



```
def sum_of_dice(n):
    suma = 0
    for _ in range(n):
        suma += rd.randint(1,6)
        return suma
```

- To get statistics, we place them into a list
 - Using list-comprehension, which we still have to learn

```
def stats_sum_of_dice(n):
    return [sum_of_dice(100) for _ in range(10000)]
```

• And now we use the histogram function in matplotlib.plt

plt.hist(stats_sum_of_dice(100), bins=25)
plt.title("Sums of 100 dice, 10000 trials")
plt.show()

- How often does die A beat die B?
 - Analytical answer:
 - In about 1/6 of all cases, there is equality
 - Die A beats die B in half the remaining cases
 - I.e. with probability 2.5/6

- How often does die A beat die B?
 - Experimental answer:
 - Let's repeat this a million times and count

```
def a_beats_b(nn):
    count = 0
    for _ in range(nn):
        a = rd.randint(1,6)
        b = rd.randint(1,6)
        if a>b:
            count += 1
        return count/nn
```

- How often does die A beat die B?
 - Experimental answer:
 - Let's repeat this a million times and count

```
>>> a_beats_b(1000000)
    0.41662
>>> 2.5/6
    0.41666666666666666667
```

Close to the real value

 rd.choice(a_list) selects a random element from a list (or a sequence type like a string)

```
>>> rd.choice("hello world")
    'e'
```

• Example: The random Python insult generator

```
list_adj = ['wart-covered', 'clumpsy', 'despairing', 'ignominous']
list_adj1 = ['Belgian', 'French', 'Flemish', 'Kraut', 'Frog',
'Cheeseburgher']
list_ani = ['striped badger', 'wart-hog', 'pot-bellied pig']
def insult():
    return f'''You son of a {rd.choice(list_adj)} {rd.choice(list_adj1)}
{rd.choice(list ani)}, I cough in your general direction!'''
```

- To shuffle a list, use:
 - rd.shuffle(a_list)