
Random Module
Thomas Schwarz, SJ

Why randomness
• Used in cryptography

• e.g. session keys, challenges, …

• Used for simulation

Sources-of-Randomness
• True randomness is difficult

• Hardware Random Number Generators

• Shot Noise: a lamp shines on a photo-diode. The
photons create noise in the circuit because of the
uncertainty principle

• Radioactive decay

• Photons travelling through a semi-transparent mirror

• Thermal noise from a resistor

• Atmospheric noise detected by a radio receiver

Sources-of-Randomness
• Hardware Random Number Generation:

• Translation into a given random distribution (e.g. a bit
stream without correlation and 50% ones) is difficult

• Software can be used to “extract randomness”

Sources-of-Randomness
• System data

• Has a bad name because its randomness was
overestimated in a version of Secure Socket Layer

Pseudo-Randomness
• Pseudo-random generator:

• Produce an output stream that is statistically
undistinguishable from true random data

• Usually based on a seed

• The same seed generates the same pseudo-random
numbers

• Use some mathematics to convert the output stream to
one having any random distribution

Random Module
• Imported via

• import random as rd

• The abbreviation is not quite as generally used as others

Random Module
• How to get random numbers:

• rd.random() gives a random floating point number
between 0 and 1

• 100 pts with rd.random between 0 and 1

•Generalized by rd.uniform(a,b)

• 100 pts with rd.uniform(0,2)

Random Module
• rd.normalvariate(mu, sigma) gives normally

distributed values

• Centered around mu

• “Average” distance from center of sigma

Random Module
• Law of large numbers:

• Perform an experiment with an outcome
independently times,

• mean looks more and

more normally distributed

• Mathematically:

• in distribution

X ∈ ℝ
n n → ∞

X̄n =
X1 + X2 + … + Xn

n

n(X̄n − μ) → 𝒩(0,σ2)

Random Module
• Example: Coin toss with a fair coin:

• Number of “heads” after n tosses is with probability

•

• (number of ways of arraigning heads over the
possible arraignments)

x

(n
r)

2n

r 2n

Random Module
• We can use math.comb to calculate the probability

import math

import matplotlib.pyplot as plt

def prob_coin_toss(nn, i):

 return math.comb(nn,i)/2**nn

nn=1000

plt.plot(range(nn), [prob_coin_toss(nn,i) for i in range(nn)])

plt.show()

Random Module

Random Module
• Or we can approximate the probability with the normal

distribution with mean and

• Formula is

•

μ =
nn
2

σ =
nn
4

P(i heads) =
1

2π ⋅ σ2
⋅ exp(−

1
2

(
i − μ

σ
)2)

Random Module
• Probability according to normal distribution

def normal_pdf(nn, i):

 sigma = math.sqrt(nn/4)

 mu = nn/2

 factor = 1/math.sqrt(2*math.pi*nn/4)

 exponent = -0.5*(i-mu)**2/sigma**2

 return factor * math.exp(exponent)

Random Module
• Coin toss experiment

Random Module
• Coin toss experiment

Random Module

Random Module
• This is why the normal distribution is so important:

• In social sciences, a parameter with unknown
probability distribution is often replaced with a normal
distribution

Random Module
• Python uses a sophisticated pseudo-random number generator

• There is a trade-off between speed and unpredictability

• Python random prefers speed and the results are not
usable for cryptographic purposes.

• For repeatability, you set the seed of the pseudo-random
generator:

• random.seed(12345)

• The argument can also be a string:

• rd.seed("India expect all men to do their
duty.”)

Random Module
• Selection:

• rd.randint(a,b) A random number (with equal
probability) between a and b, both ends included

• Example:

• The sum of throwing hundred dice

Random Module
def sum_of_dice(n):

 suma = 0

 for _ in range(n):

 suma += rd.randint(1,6)

 return suma

Random Module
• To get statistics, we place them into a list

• Using list-comprehension, which we still have to learn

def stats_sum_of_dice(n):

 return [sum_of_dice(100) for _ in range(10000)]

Random Module
• And now we use the histogram function in matplotlib.plt

plt.hist(stats_sum_of_dice(100), bins=25)

plt.title("Sums of 100 dice, 10000 trials")

plt.show()

Random Module
• How often does die A beat die B?

• Analytical answer:

• In about 1/6 of all cases, there is equality

• Die A beats die B in half the remaining cases

• I.e. with probability 2.5/6

Random Module
• How often does die A beat die B?

• Experimental answer:

• Let’s repeat this a million times and count

def a_beats_b(nn):

 count = 0

 for _ in range(nn):

 a = rd.randint(1,6)

 b = rd.randint(1,6)

 if a>b:

 count += 1

 return count/nn

Random Module
• How often does die A beat die B?

• Experimental answer:

• Let’s repeat this a million times and count

• Close to the real value

Random Module
• rd.choice(a_list) selects a random element from a

list (or a sequence type like a string)

Random Module
• Example: The random Python insult generator

list_adj = ['wart-covered', 'clumpsy', 'despairing', 'ignominous']

list_adj1 = ['Belgian', 'French', 'Flemish', 'Kraut', 'Frog',
'Cheeseburgher']

list_ani = ['striped badger', 'wart-hog', 'pot-bellied pig’]

def insult():

 return f'''You son of a {rd.choice(list_adj)} {rd.choice(list_adj1)}

{rd.choice(list_ani)}, I cough in your general direction!'''

Random Module
• To shuffle a list, use:

• rd.shuffle(a_list)

