Random Module

Thomas Schwarz, SJ

Why randomness

e Used in cryptography
* e.g. session keys, challenges, ...

e Used for simulation

Sources-of-Randomness

e Jrue randomness is difficult

e Hardware Random Number Generators

Shot Noise: a lamp shines on a photo-diode.

he

photons create noise in the circuit because of the

uncertainty principle

Radioactive decay

Photons travelling through a semi-transparent mirror

Thermal noise from a resistor

Atmospheric noise detected by a radio receiver

Sources-of-Randomness

e Hardware Random Number Generation:

* Translation into a given random distribution (e.g. a bit
stream without correlation and 50% ones) is difficult

o Software can be used to “extract randomness”

Sources-of-Randomness

e System data

e Has a bad name because its randomness was
overestimated in a version of Secure Socket Layer

Pseudo-Randomness

* Pseudo-random generator:

* Produce an output stream that is statistically
undistinguishable from true random data

 Usually based on a seed

* The same seed generates the same pseudo-random
numbers

e Use some mathematics to convert the output stream to
one having any random distribution

Random Module

 |mported via

® 1mport random as rd

 The abbreviation is not quite as generally used as others

Random Module

e How to get random numbers:

* rd.random() gives a random floating point number

between 0 and 1

* 100 pts with rd.random between 0 and 1

e Generalized by rd.uniform(a,b)

e 100 pts with rd.uniform(0,2)

Random Module

® rd.normalvariate (mu, sigma) gives normally
distributed values

e Centered around mu

* “Average” distance from center of sigma

600 A

500 A

400 -

300 -

200 -

100 A

Random Module

e |aw of large numbers:

e Perform an experiment with an outcome X € R
independently n times, n — o0

X+ X+ ..+ X,
o Mean X, = looks more and
n

more normally distributed

e Mathematically:

. \/Z()_(n — 1) — (0,6°) in distribution

Random Module

e Example: Coin toss with a fair coin:
e Number of “heads” after n tosses is x with probability
n
r
[271

e (number of ways of arraigning r heads over the 2"
possible arraignments)

Random Module

* We can use math.comb to calculate the probability

import math
import matplotlib.pyplot as plt

def prob coin toss(nn, 1):
return math.comb (nn, i) /2**nn

nn=1000
plt.plot(range(nn), [prob coin toss(nn,1) for 1 in range(nn)])

plt.show ()

Random Module

0.025 ~ ”
0.020 A
0.015 ~
0.010 A

0.005 ~

)\

0 200 400 600 800 1000

Random Module

 Or we can approximate the probability with the normal

nn nn
distribution withmean y = —and o = 4 /| —
2 4
e Formulais
. 1 L i—pu,
. P(i heads) = . exp(()%)

Random Module

* Probability according to normal distribution

def normal pdf (nn, 1):
sigma = math.sqgrt (nn/4)
mu = nn/2
factor = 1/math.sqgrt (2*math.pi*nn/4)
exponent = -0.5* (i-mu) **2/sigma**2
return factor * math.exp (exponent)

Random Module

e Coin toss experiment

50 tosses

0.110 A

0.105 ~

0.100 A

prob

0.095 ~

0.090 ~

0.085 ~

— exact

0.080 - normal approximation

22 23 24 25 26 27 28
i

Random Module

e Coin toss experiment

100 tosses

0.080 -

0.075 : /\

0.070 1
‘é 0.065 -
o

0.060 -

0.055 -

0.050 - —— exact . |

normal approximation

46 48 50 DZ 54
i

Random Module

1000 tosses

0.025 - — exact
normal approximation

0.020 A

0.015 ~

prob

0.010 A

0.005 ~

0.000 A

460 480 500 520 540

Random Module

* This is why the normal distribution is so important:

* |n social sciences, a parameter with unknown
probability distribution is often replaced with a normal
distribution

Random Module

* Python uses a sophisticated pseudo-random number generator
* There is a trade-off between speed and unpredictability

 Python random prefers speed and the results are not
usable for cryptographic purposes.

* For repeatability, you set the seed of the pseudo-random
generator:

® random.seed (12345)

* The argument can also be a string:

® rd.seed ("India expect all men to do their
duty.”)

Random Module

e Selection:

* rd.randint (a,b) A random number (with equal
probability) between a and b, both ends included

* Example:

* The sum of throwing hundred dice

Sums of 100 dice, 10000 trials

00000

00000

00000

Random Module

def sum of dice(n):
suma = 0
for 1n range(n):

suma += rd.randint (1, 0)
return suma

Random Module

e Jo get statistics, we place them into a list

e Using list-comprehension, which we still have to learn

def stats sum of dice(n):
return [sum of dice(100) for in range (10000)]

Random Module

* And now we use the histogram function in matplotlib.plt

plt.hist(stats sum of dice(100), bins=25)
plt.title("Sums of 100 dice, 10000 trials")
plt.show ()

Random Module

e How often does die A beat die B?
* Analytical answer:
* In about 1/6 of all cases, there is equality

 Die A beats die B in half the remaining cases

e |.e. with probability 2.5/6

Random Module

e How often does die A beat die B?

 Experimental answer:

o | et’s repeat this a million times and count

def a beats b(nn):

count = 0

for 1n range(nn):
a = rd.randint (1, 6)
b = rd.randint (1, 6)
1f a>b:

count += 1
return count/nn

Random Module

e How often does die A beat die B?
 Experimental answer:

o | et’s repeat this a million times and count

>>> a beats b (1000000)
0.41662

>>> 2.5/6
0.416606060060066060606067

e Close to the real value

Random Module

® rd.choice(a list) selects a random element from a
list (or a sequence type like a string)

>>> rd.choice("hello world"™)
|e|

Random Module

e Example: The random Python insult generator

list adj = ['wart-covered', 'clumpsy', 'despairing', 'ignominous']
list adjl = ['Belgian', 'French', 'Flemish', 'Kraut', 'Frog',
'Cheeseburgher']

list_ani =

def insult () :

return £'''You son of a {rd.choice(list adj)}

{rd.choice(list ani)},

['striped badger',

'wart-hog', 'pot-bellied pig’]

{rd.choilice(list adjl)}
I cough in your general direction!'''

Random Module

e TJo shuffle a list, use:

® rd.shuffle(a list)

