Types

Thomas Schwarz, SJ

Computer Organization

e Computers store and manipulate data

e Just as we manipulate scribbles on paper if we calculate with
paper and pencil

By experience:
e |etthe type of data determine how it is being stored
e Example:

e ASCII stores western language characters in 8 bits

e Unicode stores symbols from all languages and usages
in 32 bits

e 16 b integers stored in 16 bits in early desktops

Types

* In order to manipulate data correctly, we need to know their
type

 Fundamental types:
e Integers: int
e Floats: float
e Strings: str
* There is no special type for individual characters

e There are other types, such as complex, bytes

* You can (and eventually should) construct your own types

Types

* |f we have an expression, you can find its type by using
the type () function

>>> type(3141)
<class 'int'>
>>> type(3.141)
<class 'float'>
>>> type('3141"')
<class 'str'>
>>> type(b'3141"')
<class 'bytes'>
>>> |

Type Conversion

e Certain abstract values can be stored in different forms
e E.g. mwis approximately 3.141592653589793.
 The right side can be a floating point number or a string

e o obtain &, we import the math module

® 1mport math

* Then we use math.pi

Type Conversion

Example continued

0060 IDLE Shell 3.1

Python 3.10.1 (v3.10.1:2cd268a3a9, Dec 6 2
300.0.29.3)] on darwin
Type "help", "copyright", "credits" or "lic
>>> math
>>> math.pi

3.141592653589793
>>>

Type Conversion

e Obviously, math.pi should be a float

rIypve LA Y] CUNY L LYIILU [} Wil CTU

>>> | t math

>>> math.pil
3.141592653589793

>>> type(math.pi)
<class 'float'>

>>> |

Type Conversion

e We can convert 7 to a string

e | ooks the same but is different under the hood

>>> type(str(math.pi))
<class 'str'>

>>> str(math.p1)
'3.141592653589793"

- .

Type Conversion

 We can convert a floating point number to an int using the
int function

>>> 1int(45.0)

45

>>> int(45.1)
45

>>> 1nt(-45.1)
-45

A N |

e |f the floating point does not correspond to an integer,
than there is rounding to the nearest integer

 down for positive and up for negative numbers

Type Conversion

 We can create a float out of a string

>>> float('3.145")
3.145

 As well as an integer

>>> 1int('-45")
|—45

Type Conversion

e But the conversion can fall, resulting in a Value Error

>>> int('fourty five')
Traceback (most recent call last):
File "<pyshell#5>", line 1, 1n <module>
int('fourty five')
ValueError: invalid literal for int() with base 10: 'fourty five'

Type Conversion

* Thus:
* To convert to a floating point:
e Use float
 Jo convert to an integer:
* Use int
* Jo convert to a string:

e Use str

Type Conversion

e Some type conversions are automatic
* |f we use the print function:

 Argument(s) are converted automatically to strings

Type Conversion

e Resumen:
* All data processed by a computer has a type

* |In Python, we can convert to different types

