
Strings: Definitions
and Operations

Thomas Schwarz, SJ

String Definition
• Strings are defined as text enclosed with single or double

quotation mark

• Within the text we can use the other quotation marks
without problem

• a_string = 'He said: "Hello."'

another_string = "What's its worth?"

String Definition
• Example:

String Definition
• To import long strings with newlines:

• Use the triple quotes:

• But we can also use the newline character:

results = '''

a=145, b=345

a=250, b=332

a=307, b=301

a=346, b=298

'''

results = '\na=145,b=345\na=50, b=332\n'

String Definition
• Some characters within a string are compounded:

• Backslash followed by a letter

• Newline: \n translated by Python into the appropriate
sequence for the OS,

• can also use \r carriage return or \f formfeed

• Tab: \t

• \' , \" the single and double quotation mark

• \\ the backslash

• \v a vertical tab

String Definition
• The backslash is the escape

character

• Python is very good at
interpreting your intent

• E.g. my attempt at a swimmer
doodle

• Internally, backslashes are
inserted

• Basically, an invalid escape
sequence uses a literal backslash

String Definition
• Special characters not on your

keyboard:

• Can insert unicode with

• \u…. sequence

• Replace the dots with the
unicode

• E.g.: print('\u0904) yields
ऄ

String Definition
• If you want to disable the escape character, use raw

strings

• If in the near future, you need to create strings such as
http contents, etc,

• Place an r in front of the string

• E.g. print(r'\t\n\r\f') yields \t\n\r\f

String Operations
• Recall:

• We can add two strings : concatenation

• We can multiply a string with an integer (in any order):

• Example: Print out a line:

• print('-'*25)

String Operations
• Printing an ASCII chessboard

String Operations
• The first line consists of:

• five asterisks (stars) followed by five white spaces

• 5*'*' + 5*' '

• repeated four times:

• 4*(5*'*'+5*' ')

• generalize this by giving names to the arguments

• print(fields*(width*'*'+width*' '))

String Operations
• And put it into two functions:

•

• And put them together:

def left(width, height, fields):

 for _ in range(height):

 print(fields*(width*'*'+width*' '))

def right(width, height, fields):

 for _ in range(height):

 print(fields*(width*' '+width*'*'))

for _ in range(4):

 left(width=5, height=3, fields=4)

 right(width=5, height=3, fields=4)

