String Manipulations

Thomas Schwarz, SJ

String Methods

e Strings are an example of a class

e (Classes have methods, and strings have a variety of
useful methods

 Python supplied methods tend to be very fast and are
preferable to what we could code

String Methods

 There are a number of methods for strings. Most of them are
self-explaining

e s.lower (), s.upper/():

e returns the lowercase or uppercase version of the string

e s.strip():

e returns a string with whitespace removed from the start
and end

e s.isalpha()/s.isdigit()/s.isspace():

e tests if all the string chars are in the various character
classes

String Methods

* There are a number of methods for strings. Most of them are self-
explaining

e s.startswith('other'), s.endswith('other')
e tests if the string starts or ends with the given other string
e s.find('other')

e searches for the given other string (not a regular expression)
within s, and returns the first index where it begins or -1 if not
found

e s.replace('old', ‘new')

 returns a string where all occurrences of 'old' have been
replaced by 'new’

Strings and Characters

* Python does not have a special type for characters

 Characters are just strings of length 1.

String Indexing

e Strings are immutable:
* They cannot NOT be altered

 But we can access individual parts of strings

String Indexing

* We use the bracket notation to gain access to the
characters in a string

* Numbering starts with O (for historical reasons)

e a string[3] Is character number 3, i.e. the fourth
character in the string

String Indexing

 Negative numbers are counted from the back,
e starting with -1 for the last,
o -2 for the penultimate letter

e etc.

String Indexing

e Example:

* Define a string:

¢ astring = 'hello world'
® astring[-1] Is 'd"’

® astring[-2] IS '1l"

® astring[0] IS 'h'

® astring[l] Is 'e'

String Indexing

e Slices:
 We can create subsections of strings with slices
e Notation uses the bracket and the colon

e a stringla:b] is a new consisting of the letters
from a (start) to one before b (stop value)

* A third parameter is the stride

e Default values are beginning and end

String Indexing

e Slicing examples:
e Defineastring: astring = 'hello world'
* Then:
e astring[0:5] gives 'hello'

e astring([3:10] gives 'lo worl'

String Indexing

e Examples:
® astring[:10] gives 'hello worl'
® astring[5:] gives ' world'
® astring[:] makes a copy of the original string

® This is a Python idiom, learn it

String Indexing

e Strides other than -1 are less frequently used
® astring([::2] gives 'hlowrd'

e (Every other letter)

String Indexing

e A stride of -1 reverses:
® astring[::-1] gives 'dlrow olleh'

e Since strings have an equality evaluator, this allows us
to test for a palindrome quickly

A palindrome is a word or phrase that reads the
same forward and backward

e E.g. 'able was | ere | saw elba’

String Indexing

e First stab:

def 1s a palindrome(a string):
return a string == a string[::-1]

e This is faster than a “manual” method:

def palindrome (a string):
for 1 in range(len(astring)//2):
1f a string[i]!= a string[-1-1]:
return False
return True

Aside: timing

e \We can check with the timeit module
 Used to time snippets of python code

* Define the two ways of palindrome calculation

def 1s a palindrome (a string) :
return a string == a string[::-1]

def 1s a palindrome manual (a string) :
for 1 in range(len(a string)//2):
1f not a stringl[i] == a string[-1-1]:
return False
return True

Aside: timing

e Set up three tests:

test = '"able was I ere I saw elba'
test]l = 'madamimadam'
test?2 = 'voila'

e And run them

for t in [test, testl, test?2]:

print (t)
for 1in range(10):
print (timeit.timeit ('is a palindrome(t)', globals=globals()))
for 1in range(10):
print (timeit.timeit ('is a palindrome manual (t)', globals = globals()))

* globals are needed in order to allow timeit to find the
functions

e Results: Number 1 is 2-8 times faster

madamimadam

O O O OO OO OO0 OO OoOooooo

.08961983400513418
.08896537500550039
.08881758300412912
.08956966700498015
.08922679100942332
.08946112499688752
.08913508300611284
.0890048329893034
.08985433299676515
.08941579100792296
.3933403749979334
.3930454159999499
.39426012498734053
.3996310420043301
.39395316698937677
.3976135419943603
.39330237499962095
.3946556250011781
.3942780000070343
.39377504200092517

able was I ere I saw elba
.09834004098956939
.09333004200016148
.09327612500055693
.09313091600779444
.09320745800505392
.09366233299078885
.0931825830048183
.09330437499738764
.09343683300539851
.09337479098758195
.7937272920098621
.8057669580011861
.7939047079999

.7947541250032373
.79327695799293

.7959979999868665
.7983322079962818
.7923826249898411
.7974026669980958
.7965114160033409

O O OO O OO IO OO IOODIODOOOoOOoooo

Aside: timing

voila

O O OO O OO OO IODODIODOOOoOOoooo

.08431341699906625
.084524916994269
.0841138329997193
.08451995799259748
.08391624999057967
.08433470799354836
.0848872089991346
.08404904199414887
.08421075000660494
.08482595800887793
.18094412500795443
.18013808398973197
.18068012500589248
.18092833300761413
.1799738330009859
.1809990409965394
.18096858300850727
.18104429199593142
.17901629199332092
.182663457992021

