Manipulating Strings

Thomas Schwarz, SJ

How to change strings

e Strings are immutable

° my string = "hello world"
my string[3] = "p" o0
- (X
e fails

e Alternative:
 Make strings into lists
 Change the list

e Convert the list into a string

Strings to Lists

e Use the list command

>>> my string = "Maharashtra"
>>> list (my string)

['M', la|’ 'h'l la|’ lr|’ la|’ 'S', 'h'l 't'l lr|’ lai]
>>> |

Changing the string

 E.g. a simple password generator scheme

* (Pretty insecure, just a tad safer than using dictionary
words)

e Take a common word

e Change all 'a’'to 'e’, all 'e'to 'i’, 'i' to 'o0’, 'o' to 'u’,
and 'u' to 'a’

Changing the String

e A solution based on indices

def change list(my list):
for 1 1n range(len(my 1list)):

1f my list[i] == 'a':
my list[i] = 'e'
elif my list[i] == 'e':
my list[i1] = "1
elif my list[i] == "1':
my list[i] = 'O
elif my list[i] == 'o':
my list[i1] = 'u'
elif my list[i] == "u':

my list[i] = 'a'

Changing the String

e A solution based on indices

def change list(my list):

for 1 1n range(len(my 1list)):
1f my list[i] == 'a':

my list[1i] =

1f my list[i] ==

my list[1i] =

1f my list[i] ==

my list[1i] =

1f my list[i] ==

my list[1i] =

1f my list[i] ==

my list[1i] =

O & & O O K-k D D

 Can you spot the error in this version?

Changing the String

* A solution based on our list-changing paradigm
def change list 1(my list):

results = []
for element 1n results:
1f element == 'a':
results.append('e')
elif element == 'e':
results.append('1")
elif element == '1':
results.append('o')
elif element == 'o':
results.append('u')
elif element == 'u':
results.append('a')
else:

results.append (element)
return results

Changing the String

e This turns out to be 100 times faster

From list to string

e Turn lists into strings with the join-method

* The join-method has weird syntax

® 3 string

* The method is called on the empty string

"".Join(a list)

* The sole parameter is a list of characters or strings

* You can use another string on which to call join

* This string then becomes the glue

gluestr.join([strl, str2, str3, str4, strd])

strl

gluestr

str?

gluestr

str3

gluestr

strd

gluestr

strb

String Processing

e Examples
>>> a_list = ['M', 'a', 'h', 'a', 'r', 'a', 's', 'h', "t', '
>>> "".,join(a_list)
"Maharashtra’
>>> " ".,join(a_list)
'"™Maharashtra'
>>> "_".,joinCa_list)

>>> "oho".joinCa_list)
"Mohoaohohohoaohorohoaohosohohohotohorohoa'

String Processing

* Procedure:
e Take a string and convert to a list
e Change the list or create a new list

e Use join to recreate a new string

e Alternative Procedure:
e Build a string one by one, using concatenation (+ -operator)
e Creates lots of temporary strings cluttering up memory

 Which is bad if you are dealing with large strings.

String Processing

e Example: Given a string, change all vowels to increasing
digits.

 This is used as a (not very secure) password generator

e Examples:

® Wisconsin —> Wlsc2ns3n

¢ AhmedabadGujaratIndia —>
1hm2d3b4dG5)6r7t8nd90

String Processing

* |mplementation:
e Define an empty list for the result

 We return the result by changing from list to string

def pwdl (string) :
result = []

return "".joln(result)

String Processing

* Need to keep a counter for the digits

def pwdl (string) :
result []
number 1

String Processing

* Now go through the string with a for statement

» Create the list that will be returned converted into a string

def pwdl (string) :
result = []
number = 1
for character 1n string:

#append to result here

return "".joln (result)

String Processing

 We either append the letter from the string or we append
the current integer, of course cast into a string

def pwdl (string) :
result = []
number = 1
for character 1n string:
1f character not 1n "aelouAEIOU":
result.append (character)
else:
result.append(str (number))

number = (number+1) %10
return "".joln(result)

String Processing

e Argot

* A variation of a language that is not understandable to
others

e E.g. Lufardo — an argot from Buenos Aires that uses
words from ltalian dialects

* Invented originally to prevent guards from
understanding the inmates

e Some words are just based on changing words
e vesre - al reves (backwards)
e chochamu - vesre for muchacho (chap)
e |orca - vesre for calor (heat)

String Processing

e Argot
e Pig Latin

 Children’s language that uses a scheme to change
English words

 Understandable to practitioners, but not to those
untrained

String Processing

* Argot:
e Efe-speech

* A simple argot from Northern Argentina no longer in
use

e Take a word: “muchacho”

 Replace each vowel with a vowel-f-vowel
combination

e “Muchacho” becomes Mufuchafachofo

e “Aires” becomes “Afaifirefes”

String Processing

 Implementing efe-speech

 Walk through the string, modifying the result list

def efe(string) :
result = []
for character 1n string:

result.append (SOMETHING)
return "".joln(result)

String Processing

* We need to be careful about capital letters
* We can use the string method lower

 Which you find with a www-search

def efe(string) :
result = []
for character 1n string:

ellf character in "AEIOU":
result.append(character+'f'+character.lower ())

return "".joiln(result)

String Processing

def efe(string) :
result = [|
for character 1n string:
1f character in "aeiou":

result.append (character+'f'+character)
elif character in "AEIOU":

result.append (character+'f'+character.lower())
else:

result.append (character)
return "".joln(result)

String Processing

>>> efe("Alejandria™)
"Afalefejafandrifiafa’
>>> |

