
While Loops
Thomas Schwarz, SJ



While Loops
• While for loops are useful


• While loops are more general:


• Every for loop can be transformed into a while loop



While Loops
• Form of the while loop:


• Keyword is while


• Condition needs to evaluate to either True or False


• Condition is a boolean

while condition :
Statement Block 

Indent



While Loops
• Statement block is executed as long as condition is valid. 


• Allows the possibility of infinite loops

Apple Inc. 

One Infinite Loop

Cupertino, CA 95014

(408) 606-5775while condition :

Statement Block 
Indent



An Infinite Loop
while True:

    print(“Hello World”)

If this happens to you, you might have to kill Idle process.




While Loops can emulate 
for loops

• Find an equivalent while loop for the following for-loop


• (which calculates         ) 
n

∑
ν=1

1
ν

n = int(input("Enter n: "))

suma = 0

for i in range(1,n+1):

    suma += 1/i

print("The", n, "th harmonic number is", suma)




While loops can emulate for 
loops

• Solution:  the loop-variable i has to start out as 1 and then 
needs to be incremented for every loop iteration


• We stop the loop when i reaches n+1, i.e. we continue as 
long as i <= n.

n = int(input("Enter n: "))

sum = 0

i = 1

while i<= n:

    sum += 1/i

    i += 1

print("The", n, "th harmonic number is", sum)



While Loops
• An old Chinese Mathematics puzzle:


• A band of 17 pirates steal some gold coins.


• When they divide the spoils equally, 3 coins are left 
over


• Leading to a fight in which one pirate is killed


• After settling, they try again, but now 10 coins are left


• Another fight breaks out, killing another pirate.


• And now the equal division works.


• What is the smallest number of gold coins?



While Loops
• Idea:


• We try out all numbers of gold bars 


• Unlike a for-loop, we do not have to predetermine an upper 
value for 


• Which leaves open the possibility of never finding something


• Conditions are 


• 


• 


•

x = 1,2,3,…

x

x ≡ 3 (mod 17)

x ≡ 10 (mod 16)

x ≡ 0 (mod 15)



While Loops
• Details:


• Unlike a for-loop, the programmer has to initialize  
and increment  in the loop

x
x



While Loops
• We also need to be able to stop the loop


• This is done with the break statement


• With the break statement, we simply “jump out” of the 
loop



While Loops
coins = 1

while True:

   if coins%17 == 3 and coins%16 == 10 and coins%15 == 0:

      print("The answer is", coins)

      break

   coins += 1


    


Initialize coins



While Loops
coins = 1

while True:

   if coins%17 == 3 and coins%16 == 10 and coins%15 == 0:

      print("The answer is", coins)

      break

   coins += 1


    


Initialize coins



While Loops
coins = 1

while True:

   if coins%17 == 3 and coins%16 == 10 and coins%15 == 0:

      print("The answer is", coins)

      break

   coins += 1


    


Checking



While Loops

coins = 1

while True:

   if coins%17 == 3 and coins%16 == 10 and coins%15 == 0:

      print("The answer is", coins)

      break

   coins += 1


    


Found it:

   print out 

break out of look




While Loops
coins = 1

while True:

   if coins%17 == 3 and coins%16 == 10 and coins%15 == 0:

      print("The answer is", coins)

      break

   coins += 1


    


Next case



While Loops
• With a little bit more logic, we can avoid using the while-

true-break paradigm


• Though it is very pythonesque



While Loops
• Alternative:

coins = 1

while not(coins%17 == 3 and coins%16 == 10 and coins%15 == 0):

    coins += 1

print('There were',coins,'coins.')



While Loops
• Alternative:

coins = 1

while not(coins%17 == 3 and coins%16 == 10 and coins%15 == 0):

    coins += 1

print('There were',coins,'coins.')

Initialization



While Loops
• Alternative:

coins = 1

while not(coins%17 == 3 and coins%16 == 10 and coins%15 == 0):

    coins += 1

print('There were',coins,'coins.')

Test whether we are NOT done



While Loops
• Alternative:

coins = 1

while not(coins%17 == 3 and coins%16 == 10 and coins%15 == 0):

    coins += 1

print('There were',coins,'coins.')

We are not done, so we go to 
the next one



While Loops
• Alternative:

coins = 1

while not(coins%17 == 3 and coins%16 == 10 and coins%15 == 0):

    coins += 1

print('There were',coins,'coins.')

This is tricky:


The current value of coins is 
indeed the value that fulfills 
the condition.




While Loops
• We can try to make this easier by using a Boolean 

variable done

coins = 0

done = False

while not done:

    done = coins%17 == 3 and coins%16 == 10 and coins%15 == 0

    if done:

        print('The number of coins is', coins)

    coins += 1




While Loops
• We can try to make this easier by using a Boolean 

variable done

coins = 0

done = False

while not done:

    done = coins%17 == 3 and coins%16 == 10 and coins%15 == 0

    if done:

        print('The number of coins is', coins)

    coins += 1


Initializing



While Loops
• We can try to make this easier by using a Boolean 

variable done

coins = 0

done = False

while not done:

    done = coins%17 == 3 and coins%16 == 10 and coins%15 == 0

    if done:

        print('The number of coins is', coins)

    coins += 1


Recalculate the condition



While Loops
• We can try to make this easier by using a Boolean 

variable done

coins = 0

done = False

while not done:

    done = coins%17 == 3 and coins%16 == 10 and coins%15 == 0

    if done:

        print('The number of coins is', coins)

    coins += 1


Don’t forget to increment coins 
our you end up in an infinite 

loop.



While Loops
• We can optimize by removing the if-statement


• In this version, we need to take an additional increment 
of coins into account when done evaluates to True

coins = 0

done = False

while not done:

    done = coins%17 == 3 and coins%16 == 10 and coins%15 == 0

    coins += 1

print('The number of coins is', coins-1)



While Loops
• We can optimize by removing the if-statement


• In this version, we need to take an additional increment 
of coins into account when done evaluates to True

coins = 0

done = False

while not done:

    done = coins%17 == 3 and coins%16 == 10 and coins%15 == 0

    coins += 1

print('The number of coins is', coins-1)

Initialization



While Loops
• We can optimize by removing the if-statement


• In this version, we need to take an additional increment 
of coins into account when done evaluates to True

coins = 0

done = False

while not done:

    done = coins%17 == 3 and coins%16 == 10 and coins%15 == 0

    coins += 1

print('The number of coins is', coins-1)

Re-calculate the condition



While Loops
• We can optimize by removing the if-statement


• In this version, we need to take an additional increment 
of coins into account when done evaluates to True

coins = 0

done = False

while not done:

    done = coins%17 == 3 and coins%16 == 10 and coins%15 == 0

    coins += 1

print('The number of coins is', coins-1)

We always increment



While Loops
• We can optimize by removing the if-statement


• In this version, we need to take an additional increment 
of coins into account when done evaluates to True

coins = 0

done = False

while not done:

    done = coins%17 == 3 and coins%16 == 10 and coins%15 == 0

    coins += 1

print('The number of coins is', coins-1)

But the last time, we should 
not



Harmonic Numbers
• The nth harmonic number is


• It is known that this series diverges.


• Given a positive number x, we want to determine n such 
that the nth harmonic number is just above x 


• Solution:  add      while you have not reached x

hn =
n

∑
ν=1

1
ν

min({n |hn > x})

1
ν



Harmonic Numbers

• When we stop, we need to undo the last increment of nu, 
but not for sum.

x = float(input("Enter x: "))

nu = 1

sum = 0

while sum <= x:

    sum += 1/nu

    nu += 1

print("The number you are looking for is ", nu-1, 

      "and incidentally, h_n =", sum)


