Continue Statement

Thomas Schwarz, SJ

Continue

e A continue statement breaks out of the current execution
of the loop

e But goes to the next instance of the loop

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

e Example 1:

for 1 1n range(l, 100):
1if 1% 3 !'= 0:
continue
print (i, 1**2, 1*¥*3)

Continue

= RESTART: /Users/thomasschwarz/Documents/My website/Classes/BPMumbai2022/Modules/Whil
eLoop/continue.py
39 27
6 36 216
9 81 729
12 144 1728
15 225 3375
18 324 5832
21 441 9261
24 576 13824
27 729 19683
30 900 27000
33 1089 35937
36 1296 46656
39 1521 59319
42 1764 74088
45 2025 91125
48 2304 110592
51 2601 132651
54 2916 157464
57 3249 185193
60 3600 216000
63 3969 250047
66 4356 287496
69 4761 328509
72 5184 373248
75 5625 421875
78 6084 474552
81 6561 531441
84 7056 592704
87 7569 658503
90 8100 729000
93 8649 804357
96 9216 884736
99 9801 970299

Continue

e Continue and while can lend itself to an unintended
infinite loop

e Example 2:

1=1
while (1i<100) :
1f 1 %5 3 ==
continue

print (i1, 1**2, 1**3)
1 +=1

Continue

Example 2.
1i=1
while (1<100) :
1f 1 % 3 == O0:
continue

print (1, 1**2,

i+=1

i**3)

Continue

Example 2.
1i=1
while (1<100) :
1f 1 % 3 == O0:
continue

print (1, 1**2,

i+=1

i**3)

Continue

Example 2:
1=1 If i = 3:
while (1<100) : Execute continue, jump back to
1f 1 %5 3 == 0: the loop, condition is true, enter
continue the loop, execute continue, jump
print (i, i**2, ix*3) back to the loop, condition is true,

enter the loop, execute continue,
jump back to the loop

i+=1

Continue

e Use case:
e Searching for examples

e Can abort a loop early

Amicable Numbers

* A number is called perfect if it equals the sum of its
proper divisors

 This includes 1 but excludes the number itself
 Forinstance: 6 = 1+2+3
* As a “finger exercise”, we find the first 4 perfect numbers
o After this, our search will take a long time
e the fifth one is 33550336

* Then we go on to amicable numbers

Perfect Numbers

* An efficient algorithm uses number theory, so do not take
this as the latest in the art

 We are still learning
e When we program in Python, we can work incrementally

e But we still need to have a plan before we start
programming

 For a given number:

* Try out all numbers smaller and add them if they
divide the number

Perfect Numbers

e First, here iIs how we can calculate the sum of divisors:

number = 267
sum of divisors = 0
for divisor 1n range(l,267):
1f numbersdivisor ==
sum of divisors += divisor
print (number, sum of divisors)

Perfect Numbers

number = 267/
sum of divisors = 0
for divisor 1n range(l,267):
1f numbersdivisor ==
sum of divisors += divisor
print (number, sum of divisors)

Perfect Numbers

number = 267/
sum of divisors = 0
for divisor 1n range(l,267):
1f numbersdivisor ==
sum of divisors += divisor
print (number, sum of divisors)

Perfect Numbers

number = 267/
sum of divisors = 0
for divisor 1n range(l,267):
1f numbersdivisor ==
sum of divisors += divisor
print (number, sum of divisors)

Perfect Numbers

number = 267/
sum of divisors = 0
for divisor 1n range(l,267):
1f numbersdivisor ==
sum of divisors += divisor
print (number, sum of divisors)

Perfect Numbers

* There is a small improvement, since we know that 1
divides the number

number = 267
sum of divisors =1
for divisor 1in range(2,267):
1f number%$divisor ==
sum of divisors += divisor
print (number, sum of divisors)

Perfect Numbers

* We now can determine perfect numbers until 10,000

for number 1n range(2,10000) :
sum of divisors = 1
for divisor 1n range (Z2,number) :
1f numbersdivisor ==
sum of divisors += divisor
1f number == sum of divisors:
print (number, 'is perfect')

Perfect Numbers

* |f we want to find the first n perfect numbers, we need to
count the perfect numbers we have found

* We convert the form to a while loop

* This means initializing and incrementing the loop
variable

* We jump out of the loop the moment we reach the
correct count

e This program will not work because it takes too
much time to find the fifth perfect number

Perfect Numbers

* Why does it take so long?

e For every number i investigated, we check i — 2 divisors

e If we investigate numbers up to NV, we make

N . 1 2
Z (i—2)= > (N — 3N+ 2) comparisons
i=2

e The square kills us: if we want to go up to 10, we
need about 10'® comparisons

e |f any comparison takes 10 nanoseconds, we use up
0.3 years to find the fifth perfect number

Perfect Numbers

e For the first 8, we need 1.68483 x 10°! years

e An AWS a1l instance has 16 cores, so we need to have
1.05302 x 10? instances for a year

e Which costs us about 3.6923 x 10% dollars.

Amicable Numbers

e Two numbers m and n are amicable, if the sum of divisors
of m is n and the sum of divisors of n is m

e Smallest example is 220 and 264

o 220=14+24+34+4+6+8+11+12+22+24+33+44+66+88+132
e 264=1+2+4+5+10+11+20+22+44+55+110

Amicable Numbers

* To find amicable numbers up to 10000:

e et number vary between 1 and 10000

e (Calculate the sum of divisors of number, called
sum of div

e Then calculate the sum of divisors of sum of diwv

e |f that number equals number, we have two amicable
numbers

Amicable Numbers

e Since amicable numbers come in pairs, impose additional
restriction m < n.

e Since we start with m and calculate n, we can jump to
the next value for m if m > n.

Amlcable Numbers

count =
number = 2 Initializing number and count
while True:
number += 1
sum of div = 0
for jJ 1n range (1, number) :
1f number%sj ==
sum of div +=]
1f sum of div <= number:
continue
sumaZ = 0
for jJ 1n range(l,sum of div):
1f sum of divs] ==
sumaz += 7]
1f suma?2 == number:
print (number, sum of div)
count += 1
1f count == 15:
break

count = 0
number = 2
while True:
number += 1
sum of div = 0
for jJ 1n range (1, number) :
1f number%sj ==
sum of div +=]
1f sum of div <= number:
continue
sumaZ = 0
for jJ 1n range(l,sum of div):
1f sum of divs] ==
sumaz += 7]
1f suma?2 == number:
print (number, sum of div)
count += 1
1f count == 15:
break

Enter an “infinite” loop

count = 0
number = 2
while True:
number += 1
. Get the next number
sum of div = 0
for jJ 1n range (1, number) :
1f number%sj ==
sum of div +=]
1f sum of div <= number:
continue
sumaZ = 0
for jJ 1n range(l,sum of div):
1f sum of divs] ==
sumaz += 7]
1f suma?2 == number:
print (number, sum of div)
count += 1
1f count == 15:
break

count = 0
number = 2
while True:
number += 1
sum of div = 0
for jJ 1n range (1, number) :
1f number%sj ==
sum of div +=]
1f sum of div <= number:
continue
sumaZ = 0
for jJ 1n range(l,sum of div):
1f sum of divs] ==
sumaz += 7]
1f suma?2 == number:
print (number, sum of div)
count += 1
1f count == 15:
break

Find the sum of divisors of
number

count = 0

number = 2

while True:
number += 1

sum of div = 0
for jJ 1n range (1, number) :
1f number%$jy == O0:
sum of div += 7
. - =] We already now that this is not
1f sum of div <= number: : :
— T — a correct pair of amicable
continue numbers, so we can save
sumaz = 0 ourselves the work
for jJ 1n range(l,sum of div):
1f sum of divsjy == 0:
sumaz += 7]
1f suma’2 == number:

print (number, sum of div)
count += 1
1f count == 15:

break

count = 0

number = 2

while True:
number += 1

sum of div = 0
for jJ 1n range (1, number) :
1f number%$jy == O0:
sum of div += 7
. - =] We already now that this is not
1f sum of div <= number: : :
— T — a correct pair of amicable
continue numbers, so we can save
sumaz = 0 ourselves the work
for jJ 1n range(l,sum of div):
1f sum of divsjy == 0:
sumaz += 7]
1f suma’2 == number:

print (number, sum of div)
count += 1
1f count == 15:

break

count = 0
number = 2
while True:
number += 1
sum of div = 0
for jJ 1n range (1, number) :
1f numbers] ==
sum of div +=]
1f sum of div <= number:
continue
sumaz = 0
for jJ 1n range(l,sum of div
1f sum of divs] ==
sumaz += 7]
1f suma?2 == number:
print (number, sum of div)
count += 1
1f count == 15:
break

Find the sum of divisors of
sum_of div

count = 0
number = 2
while True:
number += 1
sum of div = 0
for jJ 1n range (1, number) :
1f number%sj ==
sum of div +=]
1f sum of div <= number:
continue
sumaZ = 0
for jJ 1n range(l,sum of div):
1f sum of divs] ==
sumaz += 7]
if suma? == number: Hurrah: we found one
print (number, sum of div)
count += 1
1f count == 15:
break

count = 0
number = 2
while True:
number += 1
sum of div = 0
for jJ 1n range (1, number) :
1f number%sj ==
sum of div +=]
1f sum of div <= number:
continue
sumaZ = 0
for jJ 1n range(l,sum of div):
1f sum of divs] ==
sumaz += 7]
1f suma?2 == number:
print (number, sum of div)
count += 1
1f count == 15:
break

Hurrah: we found one

Print it out, count it

count = 0
number = 2
while True:
number += 1
sum of div = 0
for jJ 1n range (1, number) :
1f number%sj ==
sum of div +=]
1f sum of div <= number:
continue
sumaz = 0
for jJ 1n range(l,sum of div):
1f sum of divs] ==
sumaz += 7]
1f suma?2 == number:
print (number, sum of div)
count += 1

if count == 15: And if the count reaches 15, we
can break
break

count = 0
number = 2
while True:
number += 1
sum of div = 0
for jJ 1n range (1, number) :
1f number%sj ==
sum of div +=]
1f sum of div <= number:
continue
sumaz = 0
for jJ 1n range(l,sum of div):
1f sum of divs] ==
sumaz += 7]
1f suma?2 == number:
print (number, sum of div)
count += 1

if count == 15: Improvement: Replace 15 with
a constant
break

Amicable Numbers

e Takes a noticeable amount of time

 Mathematicians still investigate
amicable numbers because so
many things are unknown

 But our simple “complete
enumeration” algorithms will not
be able to compete

220 2384

1184 1210
2020 2924
5020 5564
6232 6368

10744
12285
1729606
63020
066928
67095
696015
79750

100485 124155
12226065 139815

10856
14595
18410
760384
66992
71145
87633
88730

Amicable Numbers

e Qur code is also still clumsy
e |t is too long with too many steps of logic

e That’s because we do not yet have the methods to
break it up

e Also: if that is the best example for a real use of
“continue”, it shows that “continue” is quite a bit rarer
than “break”

