Basic Electronics

COSC 1010

- Electronics uses electrical currents
 - Flow from positive to negative
 - Even though electrons flow in the opposite direction
 - First component:
 - A power source
 - A resistor
 - A Light Emitting Diode

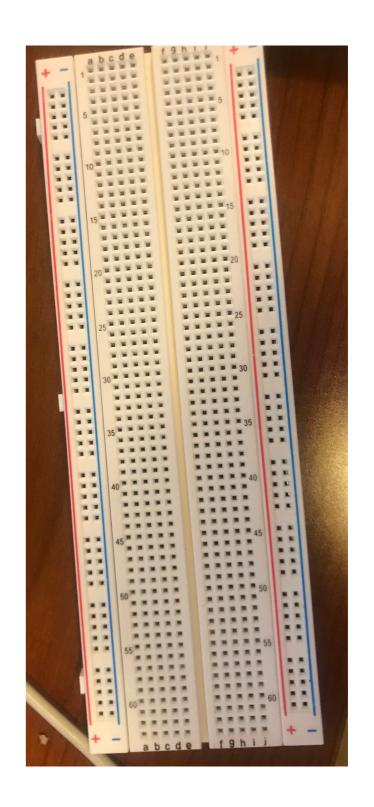
- Current is determined by voltage and resistance in the circuit
 - Ohm's Law:
 - Current I in Ampere
 - ullet Voltage U in Volt
 - Resistance R in Ohm

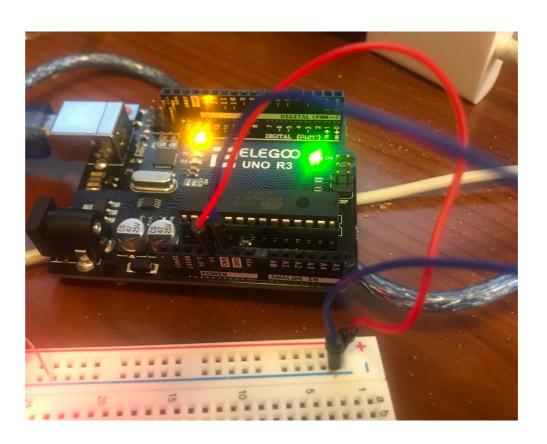
•
$$I = \frac{U}{R}$$

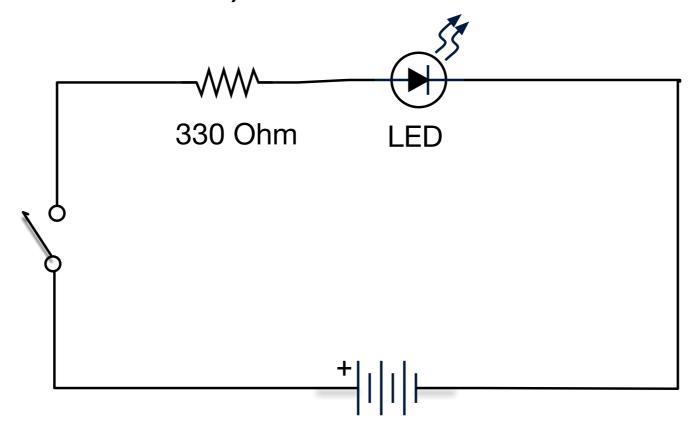
In general, we do not want very high currents

- Resistors
 - Limit current
 - Level of resistance from hundreds of Ω to $M\Omega$:
 - First band: First digit
 - Second band: Second digit
 - Third band: third digit or multiplier
 - Fourth band: Multiplier for five band resistors
 - Fifth band: Tolerance

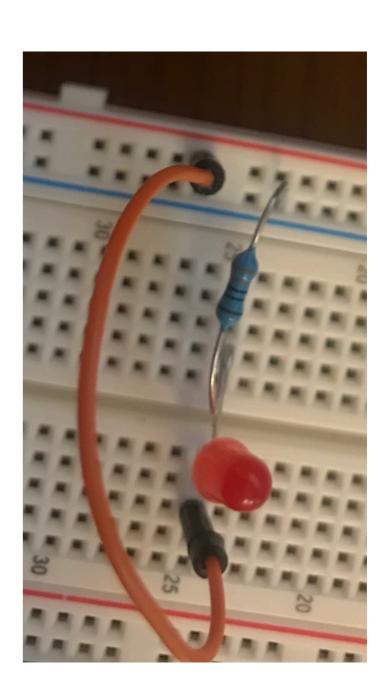
Color Codes


Color	Value
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9


- Light Emiting Diodes
 - Diodes only allow current to pass in one direction
 - From Anode (+) to Cathode
 - Anode is long wire,
 Cathode is short wire
 - Would be destroyed without an additional resistor to limit current


- To create circuits:
 - Use a bread-board
 - Solderless: just stick wires into the connectors
 - Red and Left Edge: Two horizontal rows for voltage (red) and ground (blue)
 - In the middle: Rows are connected

- To connect to Arduino:
 - Take a red wire and connect to 5V
 - Take a blue wire and connect to Gnd
 - Make sure you stick in the wire ends well



- Now we create the following circuit
 - (Without the switch)

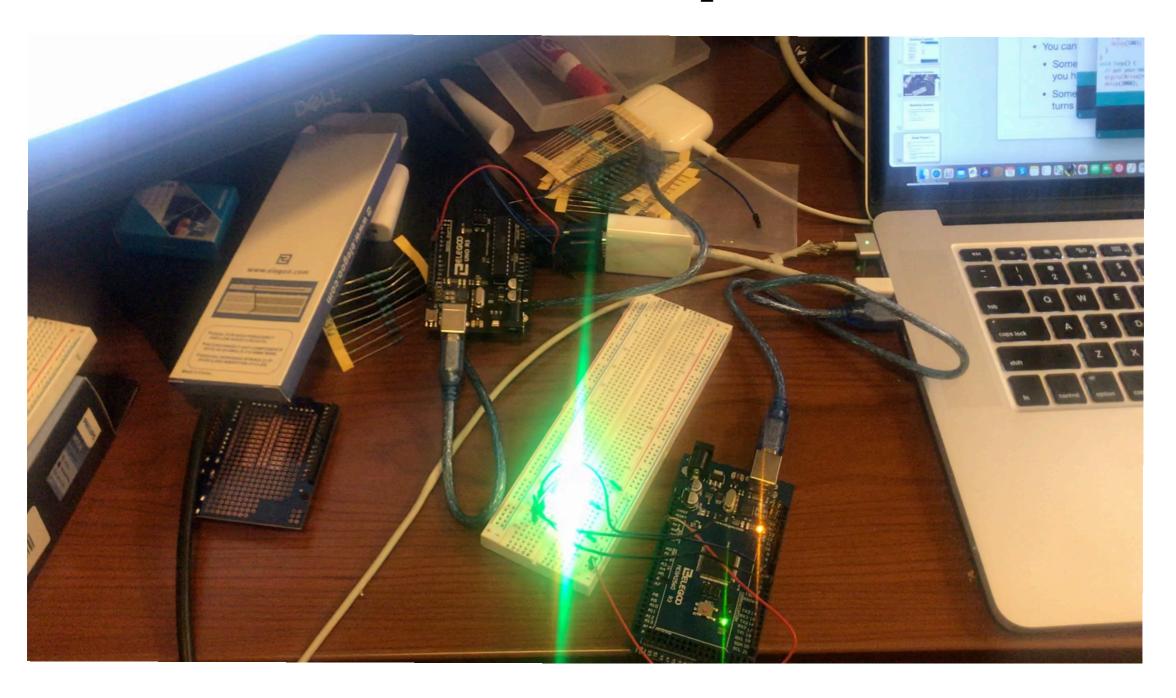
Power and Ground

- Stick LED and resistor in the same row of the breadboard
- Connect with + and -
- Make sure that the long wire of the LED is connected to + (or nothing will happen)
- Wiggle the connections to make sure that contacts are good
- LED should shine brightly
 - (If not: bad contact or error in implementation)

- If this works, modify the previous sketch
 - Use open to find the sketch file
 - Change the name of the output to 8
 - Connect the red (plus) wire to analog pin 8 on the other side of the Arduino
- Compile and run

```
sketch_nov15a | Arduino 1.8.13
                                                                   O
  sketch_nov15a
/* This is the first blinker program */
void setup() {
  pinMode(8, OUTPUT);
void loop() {
  digitalWrite(8, HIGH);
  delay(100);
  digitalWrite(8, LOW);
  delay(500);
  digitalWrite(8, HIGH);
  delay(1000);
  digitalWrite(8, LOW);
  delay(500);
Done uploading.
Sketch uses 968 bytes (3%) of program storage space. Maximum is 32256
Global variables use 9 bytes (0%) of dynamic memory, leaving 2039 byte
```


- You can experiment by putting in a bigger resistor
 - Which you achieve by putting two resistors in series
 \downwedge \www.


330 Ohm 200 Ohm

- This would be ~ 550 Ohms
- Or using different color LEDs

Small Project 1

- Reset the circuit so that you are using three different LEDs
- Connect the ground to ground and the others to Digital Outputs
- Then program a traffic light
 - You can be fancy:
 - Some countries have the red light flash just before you hit green
 - Some countries have the green light flash before it turns yellow

Example

Here I am using an Arduino Mega

- Code needs to be translated into machine language
 - What the System-On-a-Chip (SOC) understands
- Human readable text is pre-processed
- The result is then compiled
 - And in real life combined with other code, but we will not do this for a while
- In the Arduino, we can now upload the machine language program
 - and the Arduino will start executing it

- Arduino Sketches are written in C
 - Can (and should) write explanatory text as comments
 - Two types: /* */ combination can span lines
 - /* I am a comment */
 - // I am a comment that ends at the line

- Can use pre-processor commands
 - A pre-processor passes through the code before it gets compiled
 - Usually definitions and inclusions of libraries
 - Example:

```
#define red 2
#define yellow 3
#define green 4
```

Now all references to "red" will be replaced by 2

- Preprocessor commands
- We read

```
pinMode(red, OUTPUT);
```

is translated by the preprocessor into

```
pinMode(2, OUTPUT);
```

 Every occurrence of the string "red" is replaced with an occurrence of the string "2".