Arduino 3

Thomas Schwarz

- We can use Voltage or Resistance to control the output of a LED
- With an Arduino: Use Pulse Width Modulation
 - Output oscillates between full voltage and no voltage
 - At 50 cycles per second, so we cannot see it

- Any Arduino port with a tilde ~ can create PWM output
- We use pin 3.
- Connect Diode Anode to Pin 3
- Connect Diode Kathode to 300 Ohm resistor
- Connect resistor to GND

- C variables have a type
- We set a global variable d to 2 (d for delay)
- In setup, we set pin 3 as Output
- In loop, we have a C-style loop
 - declares int a,
 - while a smaller than 256 = 2**8:
 - increment a
 - and then use analogWrite to set a PWM at pin 3

	• • sketch_apr18a Arduino 1.8.13	```````````````````````````````````````
		ø
	sketch_apr18a § int d = 2;	
.4	<pre>void setup() { //Output at pin 3 of the Arduino pinMode(3, OUTPUT); }</pre>	
ΙT	<pre>void loop() { for (int a = 0; a<256; a++) { analogWrite(3,a); delay(d);</pre>	
	<pre>} for (int a = 255; a>=0; a) { analogWrite(3,a); delay(d); }</pre>	
	<pre>delay(300); }</pre>	

Done uploading.

Sketch uses 1106 bytes (3%) of program storage space. Maximum is 3225 Global variables use 9 bytes (0%) of dynamic memory, leaving 2039 byte

 We can change d to set the speed of the LED "breathing"

sketch_apr18a Arduino 1.8.13	
	ø
sketch_apr18a §	
int $d = 2;$	
<pre>void setup() { //Output at pin 3 of the Arduino pinMode(3, OUTPUT); }</pre>	
<pre>void loop() { for (int a = 0; a<256; a++) { analogWrite(3,a); delay(d); }</pre>	
<pre> } for (int a = 255; a>=0; a) { analogWrite(3,a); delay(d); } </pre>	
$\left \frac{1}{2} \right $	
}	

Done uploading.

Sketch uses 1106 bytes (3%) of program storage space. Maximum is 3225 Global variables use 9 bytes (0%) of dynamic memory, leaving 2039 byte

- Some components need Libraries
 - A collection of definitions and functions similar to a Python module
 - Typical libraries are compressed in a .zip format
 - To install a library, go to Arduino IDE, Sketch, and then install a zip library.

- Ultrasonic Sensor:
 - A low costs device that uses ultra-sound to measure distances with an accuracy of less than a centimeter
 - Needs the HCSR04-1.1.0.zip library which you can downloa from Elegoo or from arduinolibraries.info

- First step:
 - Download and install the library
- Second step: Connect the distance sensor to your Arduino
 - Find MF wires
 - Connect ground to ground and VCC to 5V
 - Connect Trig to pin 12
 - Connect Echo to pin 11

- Third step:
 - Open the Serial Monitor under Tools

• Fourth Step: Write the sketch

- We use #include SR04.h to make use of the library
- We define the pins:
 - #define TRIG_PIN 12
 - #define ECHO_PIN 11

```
#include "SR04.h"
#define TRIG_PIN 12
#define ECH0_PIN 11
```

- We also create a SR04 device object and a long integer a
 - Long means 64bits, which is what the SR04 returns as its distance measure

- Our setup function needs to start talking to the serial port
- The 9600 is the BAUD rate, do not change that.

```
void setup() {
    Serial.begin(9600);
    delay(1000);
}
```

- The loop measures the distance every second
- The first line gets the long int distance
- The second line prints it to the Serial monitor
 - print just prints,
 - println prints and creates a new line
 - Then we wait for a second

```
void loop() {
    a=sr04.Distance();
    Serial.println(a);
    delay(1000);
}
```

```
#include "SR04.h"
#define TRIG_PIN 12
#define ECHO_PIN 11
SR04 sr04 = SR04(ECH0_PIN, TRIG_PIN);
long a;
void setup() {
   Serial.begin(9600);//Initialization of Serial Port
   delay(1000);
}
void loop() {
   a=sr04.Distance();
   Serial.println(a);
   delay(1000);
}
```

On the serial monitor, you can now see what the Arduino returns