Encodings

Thomas Schwarz, SJ

Encodings

® |nformation technology has developed a large
number of ways of storing particular data

® Here Is some background

Woktes - Dot et NTPL ol

] 1

e I8 Sesth Nevgeten View e ptitrs Window Hely
A - RBARDT A2 * 9
r Y
' 4+)

. & N

Defot Lo Mode

Using a forensics tool (Winhex) in order
to reveal the bytes actually stored

—Ncodings

e Jeleprinters

* Used to send printed messages

* Can be done through a single
line

* Use timing to synchronize up
and down values

—Ncodings

e Serial connection:
e Voltage level during an interval indicates a bit

e Digital means that changes in voltage level can
tolerated without information loss

voltage
A

be

fTo0oo017T170171T71T7T 0000170707100

time

—Ncodings

e Parallel Connection

e Can send more than one bit at a time

* Sometimes, one line sends a timing signal

e Sending
* 1000
* 0100
* 1100
* 0100

 Small errors in timing and
voltage are repaired
automatically

. |

[time
1T0 1010171017010 17017T017071°O0°1

voltage line O

i |

[time
1010001117001 10110071711

voltage line 1

1 000 noc

[time
o1 1110001707170 17T017T1700T1OQ01

voltage

|0

| time
O0071T0000171T000O0017T0O00O0T1O0

line 2

voltage line 3

|

| time
oooot1r1111T0000017T1T 1171700

—Ncodings

* Need a code to transmit letters and control signals
 Emile Baudot’s code 1870
* 5 bit code

 Machine had 5 keys, two for the left and three
for the right hand

 Encodes capital letters plus NULL and DEL

 Operators had to keep a rhythm to be
understood on the other side

—Ncodings

 Many successors to Baudot's code
 Murray’s code (1901) for keyboard

e |ntroduced control characters such as
Carriage Return (CR) and Line Feed (LF)

* Used by Western Union until 1950

—Ncodings

 Computers and punch cards
 Needed an encoding for strings
« EBCDIC — 1963 for punch cards by IBM

e 8b code

—Ncodings

« ASCII — American Standard Code for Information Interchange —
1963

e 8b code

 Developed by American Standard Association, which
became American National Standards Institute (ANSI)

e 32 control characters

91 alphanumerical and symbol characters

 Used only 7b to encode them to allow local variants
o Extended ASCII

o Uses full 8b

* Chooses letters for Western languages

—Ncodings

e Unicode - 1991

* “Universal code” capable of implementing text in
all relevant languages

e 32b-code

 For compression, uses “language planes”

—Ncodings

e UTF-7 — 1998
* /b-code
* |nvented to send email more efficiently
 Compatible with basic ASCI!

e Not used because of awkwardness in
translating 7b pieces in 8b computer
architecture

—Ncodings

UTF-8 — Unicode

e Code that uses
e 8b for the first 128 characters (basically ASCII)
e 16b for the next 1920 characters

e [atin alphabets, Cyrillic, Coptic, Armenian, Hebrew,
Arabic, Syriac, Thaana, N'Ko

e 24p for
 Chinese, Japanese, Koreans
e 32D for

* Everything else

IEEE 754 Standard for Floating Point

* Double precision format

|
g |E: Biase Z
e | EXxponent | Significand 20 bits
| 11 bits
Bit index 31 30 2019 0
Significand continued 32 bits

e Numbers

* [here is a variety of ways of storing numbers
(integers)

* All based on the binary format

e For floating point numbers, the exact format has
a large influence on the accuracy of calculations

* All computers use the IEEE standard

Python and Encodings

 Python “understands” several hundred encodings
 Most important
e ascii (corresponds to the 7-bit ASCII standard)
- utf-8 (usually your best bet for data from the Web)
- |atin-1

- straight-forward interpretation of the 8-bit
extended ASCI|

- never throws a “cannot decode” error

- NO guarantee that it read things the right way

Problems with Line Endings

 ASCII code was developed when computers wrote to
teleprinters.

* A new line consisted of a carriage return followed or
preceded by a line-feed.

e UNIX and windows choose to different encodings
 Unix has just the newline character “\n”
 Windows has the carriage return: “\r\n”

e By default, Python operates in “universal newline mode”
e All common newline combinations are understood

e Python writes new lines just with a “\n”

Python

String Formatting

j@*@ Formatting Strings

 We really need to learn how to format strings

* Python has made several attempts before settling
on an efficient syntax.

* You can find information on the previous solutions
on the net.

e Usethe format function
* Distinguish between the blueprint
e and the string to be formatted

e Result is the formatted string.

5@*‘45 Formatting Strings

* Blueprint string

« Uses {} to denote places for variables

e Simple example

. c'{} {}'}[format]('one' ‘two ')
7 A '

. : Calllng 1 Strlng to be
Blueprint format formatted

e Result ‘'one two’

Formatting Strings

* |nside the brackets, we can put indices to select
variables

e 0 means first variable, 1 second, ...

e Can reuse variables

>>> "{0}, {0}, {1}, Just {O0}".format ("great", "extraordinary")
'great, great, extraordinary, Jjust great'

ﬁ‘* Formatting Strings

* Additional formatting inside the bracket after a
colon

* Can assign the number of characters to print out

>>> ”{O:lO},'{l:lO}, {0:10}".format ("funny", "nuts")
'funny , nuts , funny '

* Default alignment is to the left

HF Formatting Strings

i Nl

e Use N to center
* Use < to left-align

* Use > to right-align

>>> "{0:10}]{1:710}1{0:>10}".format ("sheep", "wolf")
'sheep | wolf | sheep'

ﬁ‘* Formatting Strings

 Numbers are handled without specitying format

INnstructions.

>>> "{} divided by {} is {} modulo {}".format(143, 29, 143//29, 143%29)
'143 divided by 29 is 4 modulo 27’
|

 Or we can insist on special types
e Use s for string
* Use d for decimal
e Use f for floating point

e Use e for floating point in exponential notation

59‘? Formatting Strings

- By specifying “t” we ask for floating point format

- By specifying “e” we ask for scientific format

>>> "{0:f}, {O:e}".format(3.141)
'3.141000, 3.141000e+00°"

Formatting Strings

 Padding

* |f the variable needs more space to print out, it
will be provided automatically

>>> "{:10s}".format ("Pneumonoultramicroscopicsilicovolcanoconiosis")
'Pneumonoultramicroscopicsilicovolcanoconiosis'

* This is actually the longest officially recognized
word In English

59‘? Formatting Strings

 Padding:

 On the reverse, we can give the number of
significant digits after a period

>>> "{:8.2f}".format (3.141592653589793238462643383279502884197169399375105
82097494459230781640628620899862803482534211706798214808651328230664709384
4609550582231725359408128481)

! 3.14"

 We only want to keep two decimal digits after the
period

e But use a total of 8 spaces for the number.

ﬁ‘@ Formatting Strings

 Escaping curly brackets:

* |t we want to write strings with format containing
the curly brackets “{“ and “}”, we just have to
write “{{" and “}}

- -

>>> "{{ {}, E} }}".format(3, 4)
"{ 3, 4 '

* A single bracket is a placeholder, a double curly
bracket is a single one in the resulting string.

Print|

 Develop a mortgage payment plan

Application: Pretty

Y

 Accountants have formulae for that, but it is fun to do it

directly
e Assume you take out a loan of L$

e The loan is financed at a rate of

dollars

r% annually

e |nterest is paid monthly, i.e. at a rate of r/12%

« Fach month you make a repayment

e Part of the repayment is to pay

he Interest

 The remainder pays down the ©

ept

[‘ N
L - IR
el 7 > ’i?\y\ v s “‘
2 b\i' o S
I TR 0
L S N e
L 2 ' s g
R Lo

* Use a while-loop
« Condition is that there is still an outstanding debt
* Adjust outstanding debt
* Count the number of payments

e Need to initialize values

¢ / “
4 | R N
£ s = -ffl A.%
o - N S _—
i N o
i
LGNSR
- 23 ¥

* We need values for:
 Monthly Rate (interest in percent)/1200
* Principal
 Repayment

e (Get those from the user

* A true application would contain code that
checks whether these numbers make sense.

‘Mortgage Payments

e |nitialization

princ = float (input ("What is the prinipal %))
rate = float (input ("What is the interest rate (in percents)? ")) /1200
print ("Your minimum rate 1s ", rate*princ)
paym = float (i1nput ("What is the monthly payment? %))
0

month =

!t & g -

|
j y 4 ‘\ = =
f - - S i
; e e
s TR S
i U - "
Q. 3 * ‘é?lif}? =)
L W .“‘ i“ ‘\ ‘\! e

3

 We continue until we paid down the principal to
Zero

while princ > 0O:

> = N ..\‘

1 1 @5
o - X ;"\ oy s o2
g \1" e
I TN
el N Ve
v }“, t\ ;..g:‘“ s
1055 e
T i

 Update the situation in the while loop

e Last payment does not need to be full, so we
calculate it

intpaid = princ*rate
princ = princ + princ*rate - paym
1f princ < 0O:
lastpayment = paym + princ
princ = 0
month += 1

*khkkhkkhkkkhkkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkhkhkkkhkkk*x*k%
** The Ultimate Mortgage Calculator **

e db I b
What i1s the prinipal 40000

What 1s the interest rate (in percents)? 4
Your minimum rate 1is 133.33

What i1s the monthly payment? 1950

This 1s what your mortgage scheme looks like

Month Interest Principal
1 133.33 38183.33
2 127.28 36360.61
3 121.20 34531.81
4 115.11 32696.92
5 108.99 30855.91
6 102.85 29008.76
7 96.70 27155.46
8 90.52 25295.98
9 84.32 23430.30

10 78.10 21558.40
11 71.86 19680.26
12 65.60 17795.86
13 59.32 15905.18
14 53.02 14008.20
15 46.69 12104.89
16 40.35 10195.24
17 33.98 8279.22
18 27.60 6356.82
19 21.19 4428.01
20 14.76 2492.77
21 8.31 551.08
22 1.84 0.00

You paid of the loan in 22 months, and your last payment was 552.92

- -

Pretty-Printing lables

 Format Strings revisited:
 Format string — blueprint

 Uses { } to denote spots where variables get
iInserted

Pretty-Printing lables

o Syntax
e {a:A10.3f}
 a — the number of the variable
» Can be left out
o . — what follows is the formatting instruction
« 10 — number of spaces for the variable
e . — what follows Is the precision
e 3 — precision

o f— printin floating point format

Pretty-Printing lables

e |f the variable is larger than the space given:
* Full value is printed out
* Alignment by default is
e |eft (<) for strings

* right (>) for numbers

Pretty-Printing lables

e [ask:

* A program that gives a table for the log and the
exponential function between 1 and 10

e Hint: x=1+1/10 x | exp(x) | log(x)
1.00 | 2.71828 | 0.00000
1.10 | 3.00417 | 0.09531
1.20 | 3.32012 | 0.18232
1.30 | 3.06930 | 0.26236
1.40 | 4.05520 | 0.330647
1.50 | 4.48169 | 0.40547
1.60 | 4,.95303 | 0.47000
1.70 | 5.47395 | 0.53063

