
Encodings
Thomas Schwarz, SJ

Encodings
• Information technology has developed a large

number of ways of storing particular data

• Here is some background

Using a forensics tool (Winhex) in order
to reveal the bytes actually stored

Encodings
• Teleprinters

• Used to send printed messages

• Can be done through a single

line

• Use timing to synchronize up

and down values

Encodings
• Serial connection:

• Voltage level during an interval indicates a bit

• Digital means that changes in voltage level can be

tolerated without information loss

time

voltage

1 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1

Encodings
• Parallel Connection

• Can send more than one bit at a time

• Sometimes, one line sends a timing signal

• Sending

• 1000

• 0100

• 1100

• 0100

• …

• Small errors in timing and
voltage are repaired
automatically

time

voltage

1 0 1 1 1 0 1 0 0 0 0 10 1 0 0 1 0 1 1 1

clock

time

voltage

1 0 1 1 0 1 1 0 1 0 1 10 0 0 1 1 0 1 0 1

line 0

time

voltage

0 1 1 0 1 0 1 0 1 0 0 11 1 0 0 1 0 1 0 1

line 1

time

voltage

0 0 0 0 0 0 0 0 0 0 1 01 0 0 0 1 0 1 0 0

line 2

time

voltage

0 0 0 1 0 0 0 0 1 1 0 00 1 1 1 1 0 1 1 1

line 3

Encodings
• Need a code to transmit letters and control signals

• Émile Baudot’s code 1870

• 5 bit code

• Machine had 5 keys, two for the left and three

for the right hand

• Encodes capital letters plus NULL and DEL

• Operators had to keep a rhythm to be

understood on the other side

Encodings
• Many successors to Baudot’s code

• Murray’s code (1901) for keyboard

• Introduced control characters such as

Carriage Return (CR) and Line Feed (LF)

• Used by Western Union until 1950

Encodings
• Computers and punch cards

• Needed an encoding for strings

• EBCDIC — 1963 for punch cards by IBM

• 8b code

Encodings
• ASCII — American Standard Code for Information Interchange —

1963

• 8b code

• Developed by American Standard Association, which
became American National Standards Institute (ANSI)

• 32 control characters

• 91 alphanumerical and symbol characters

• Used only 7b to encode them to allow local variants

• Extended ASCII

• Uses full 8b

• Chooses letters for Western languages

Encodings
• Unicode - 1991

• “Universal code” capable of implementing text in
all relevant languages

• 32b-code

• For compression, uses “language planes”

Encodings
• UTF-7 — 1998

• 7b-code

• Invented to send email more efficiently

• Compatible with basic ASCII

• Not used because of awkwardness in

translating 7b pieces in 8b computer
architecture

Encodings
• UTF-8 — Unicode

• Code that uses

• 8b for the first 128 characters (basically ASCII)

• 16b for the next 1920 characters

• Latin alphabets, Cyrillic, Coptic, Armenian, Hebrew,
Arabic, Syriac, Thaana, N’Ko

• 24b for

• Chinese, Japanese, Koreans

• 32b for

• Everything else

Encodings
• Numbers

• There is a variety of ways of storing numbers
(integers)

• All based on the binary format

• For floating point numbers, the exact format has
a large influence on the accuracy of calculations

• All computers use the IEEE standard

Python and Encodings
• Python “understands” several hundred encodings

• Most important

• ascii (corresponds to the 7-bit ASCII standard)

• utf-8 (usually your best bet for data from the Web)

• latin-1

• straight-forward interpretation of the 8-bit
extended ASCII

• never throws a “cannot decode” error

• no guarantee that it read things the right way

Problems with Line Endings
• ASCII code was developed when computers wrote to

teleprinters.

• A new line consisted of a carriage return followed or
preceded by a line-feed.

• UNIX and windows choose to different encodings

• Unix has just the newline character “\n”

• Windows has the carriage return: “\r\n”

• By default, Python operates in “universal newline mode”

• All common newline combinations are understood

• Python writes new lines just with a “\n”

Python
String Formatting

• We really need to learn how to format strings

• Python has made several attempts before settling

on an efficient syntax.

• You can find information on the previous solutions

on the net.

• Use the format function

• Distinguish between the blueprint

• and the string to be formatted

• Result is the formatted string.

Formatting Strings

• Blueprint string

• Uses {} to denote places for variables

• Simple example

• "{} {}".format('one', ‘two')

• Result

Blueprint
Calling

format

String to be

formatted

‘one two’

Formatting Strings

• Inside the brackets, we can put indices to select
variables

• 0 means first variable, 1 second, …

• Can reuse variables

Formatting Strings

• Additional formatting inside the bracket after a
colon

• Can assign the number of characters to print out

• Default alignment is to the left

Formatting Strings

• Use ^ to center

• Use < to left-align

• Use > to right-align

Formatting Strings

• Numbers are handled without specifying format
instructions.

• Or we can insist on special types

• Use s for string

• Use d for decimal

• Use f for floating point

• Use e for floating point in exponential notation

Formatting Strings

Formatting Strings
• By specifying “f” we ask for floating point format

• By specifying “e” we ask for scientific format

• Padding

• If the variable needs more space to print out, it

will be provided automatically

• This is actually the longest officially recognized
word in English

Formatting Strings

• Padding:

• On the reverse, we can give the number of

significant digits after a period

• We only want to keep two decimal digits after the
period

• But use a total of 8 spaces for the number.

Formatting Strings

• Escaping curly brackets:

• If we want to write strings with format containing

the curly brackets “{“ and “}”, we just have to
write “{{“ and “}}”

• A single bracket is a placeholder, a double curly
bracket is a single one in the resulting string.

Formatting Strings

Application: Pretty
Printing

• Develop a mortgage payment plan

• Accountants have formulae for that, but it is fun to do it

directly

• Assume you take out a loan of L$ dollars

• The loan is financed at a rate of r% annually

• Interest is paid monthly, i.e. at a rate of r/12%

• Each month you make a repayment

• Part of the repayment is to pay the interest

• The remainder pays down the debt

• Use a while-loop

• Condition is that there is still an outstanding debt

• Adjust outstanding debt

• Count the number of payments

• Need to initialize values

Mortgage Payments

• We need values for:

• Monthly Rate (interest in percent)/1200

• Principal

• Repayment

• Get those from the user

• A true application would contain code that

checks whether these numbers make sense.

Mortgage Payments

• Initialization

Mortgage Payments

princ = float(input("What is the prinipal “))

rate = float(input("What is the interest rate (in percents)? "))/1200

print("Your minimum rate is ", rate*princ)

paym = float(input("What is the monthly payment? “))

month = 0

• We continue until we paid down the principal to
zero

Mortgage Payments

while princ > 0:

• Update the situation in the while loop

• Last payment does not need to be full, so we

calculate it

Mortgage Payments

intpaid = princ*rate

princ = princ + princ*rate - paym

if princ < 0:

 lastpayment = paym + princ

 princ = 0

month += 1

Put things together

Pretty-Printing Tables
• Format Strings revisited:

• Format string — blueprint

• Uses { } to denote spots where variables get

inserted

Pretty-Printing Tables
• Syntax

• {a:^10.3f}

• a — the number of the variable

• Can be left out

• : — what follows is the formatting instruction

• 10 — number of spaces for the variable

• . — what follows is the precision

• 3 — precision

• f — print in floating point format

Pretty-Printing Tables
• If the variable is larger than the space given:

• Full value is printed out

• Alignment by default is

• left (<) for strings

• right (>) for numbers

Pretty-Printing Tables
• Task:

• A program that gives a table for the log and the
exponential function between 1 and 10

• Hint: x=1+i/10 x | exp(x) | log(x)

 1.00 | 2.71828 | 0.00000

 1.10 | 3.00417 | 0.09531

 1.20 | 3.32012 | 0.18232

 1.30 | 3.66930 | 0.26236

 1.40 | 4.05520 | 0.33647

 1.50 | 4.48169 | 0.40547

 1.60 | 4.95303 | 0.47000

 1.70 | 5.47395 | 0.53063

