A short history of computing

Thomas Schwarz, SJ

Calculation

- Calculation stands at the beginning of civilization
 - Sumerian Cuneiform: 3400 BC
 - developed to keep accounts and records of business transactions

Standard of Ur, side B: top banquet, bottom men driving cattle and sheep

Bill of sales in cuneiform

Abacus: First Calculators

- Abacus or Counting board
 - Known from Mesopatamia
 2700 BC
 - Current type invented in China 200 BC
 - Used by babylonians, romans, greeks, medieval times
 - Still used in Japan
 - Can be used for all four basic arithmetic operations

What do we not know

- Antikythera mechanism, detected in a wreck under the Mediterranean sea 1901
- Analog computing device
 - Maybe for astronomy
 - From 2nd century BC to first century BC

Napier's Bones

- 1617 John Napier: Numbering rods using logarithmic scale
- Precursor to the slide rule

Calculators

• Odometers:

- Pliny / Strabo: Distances of routes traveled by Alexander the great measured by odometers
- 635: Jin Shu: records use of odometer in the Han period of China
 - Also: south-pointing chariot

Calculators

- 17th century: mechanical calculators
 - 1632 Wilhelm Schickard calculating clock
 - 1642 Blaise Pascal
 - 1672 Gottfried Leibniz: direct multiplication

Calculators

- 1709; Giovanni Poleni: calculator that can multiply automatically
- 1727: Antonius Braun: fully functional four operations machine
- 1851 Thomas de Colmar: Arithmometer: suitable to an office environment

- (1791-1871) Founding member of the Royal Astronomical Society
 - Well aware of faulty logarithm tables
 - Which were used for navigation
 - And navigation was the backbone of the British Empire
 - Saw potential in the *method of the differences*

• Calculate the values of a polynomial for x = 0, x = 1, x = 2, ...

•
$$f(x) = x^4 - x^2 + 2$$

- First calculate $D_1(n) = f(n+1) f(n)$
- This is helpful because $D_1(n)$ is a polynomial of degree ≤ 3
- $D_1[n] = (n+1)^4 (n+1)^2 + 2 n^4 + n^2 2$ = $n^4 + 4n^3 + 6n^2 + 4n + 2 - n^2 - 2n - 1 + 2 - n^4 + n^2 - 2$ = $4n^3 + 6n^2 + 2n$

- Now use a table:
- Example:
- f(2) = f(1) + f(2) f(1)

n	f(n)	D1(n)	
0	2	0	
1	2+0=2	12	
2	2+12=14	60	
3	14+60=74	168	
4	74+168=242	360	
5	242+360=602	660	

- We can use the same method in order to calculate $D_1(n)$
- $D_2(n) = D_1(n+1) D_1(n) = 12n^2 + 24n + 12$
- $D_3(n) = D_2(n+1) D_2(n) = 24n + 36$
- $D_4(n) = 24$

• Now we have a bigger table:

n	f(n)	D1(n)	D2(n)	D3(n)	D4(n)	D5(n)
0	2	0	12	36	24	0
1	2	12	48	60	24	0
2	14	60	108	84	24	0
3	74	168	192	108	24	0
4	242	360	300	132	24	0
5	602	660	432	156	24	0

- Why is this cool:
 - All tables are calculated in exactly the same way
 - To get different functions:
 - Change the values of the first row

n	f(n)	D1(n)	D2(n)	D3(n)	D4(n)	D5(n)
0	2	0	12	36	24	0
1	2	12	48	60	24	0
2	14	60	108	84	24	0
3	74	168	192	108	24	0
4	242	360	300	132	24	0
5	602	660	432	156	24	0

- Babbage insight:
 - One can mechanize the calculations of the difference table
 - 1832: government funding for a difference engine
 - Digits are represented as positions of wheels
 - 20 decimal positions
 - Was at the boundary of what precision tools can provide
 - Still room sized and needed steam energy

- Why did he receive support?
 - Mechanical calculation allows
 - Tables without mistakes
 - Better navigation
 - Less losses of ships
 - Cheaper insurance rates, less lives lost, and lower navy spending
 - And the government is interested
- It helps to eventually become the Lucasian professor of Mathematics at Cambridge

- Why did he not finish it?
 - Ran out of funds for paying his workmen
 - Had an idea for a much more versatile machine
- Machine that could react to instructions
- Instructions given by a punch card

Jacquard Loom

- A loom that can weave very intricate patterns (1800)
- Previously:
 - Draw loom was controlled by a master weaver
 - Master weaver commands a draw boy to raise hooks that controlled harnesses
 - Generates intricate floral patterns
- Jacquard loom:
 - Skill of a master weaver codified in punch cards

Jacquard Loom

- Consequences of using the Jacquard Loom
 - Introduced in Britain in 1820
 - Lower skilled weavers can now produce better quality products for a fraction of the costs
 - First effect: Move monies from employees (the master weavers) to mill owners
 - Helps create the Luddite movement
 - Second effect: A new class of skilled workers replaces the master weavers: the ones that create the punch cards and keep the loom working

- First described in 1837
 - Has an arithmetic logic unit
 - conditional branching
 - integrated memory
 - And too difficult to build without hindsight

Trial version of Analytical Engine, Science Museum, London

- 1842 Luigi Frederico Menabrea publishes a description based on a lecture by Babbage
- 1843 Ada Lovelace translate this memoir into English
- Adds ways of how this machine could be used to make useful calculations
- Considered the "first computer programmer" and has a programming language named after her

 And after all, their work was unknown to the pioneers of computing

- Bombe (1939, 1940, 1943) / Poland, UK, US:
 - Specialized electro-mechanical machine to break ciphers
 - Part of the war-effort to break German codes, especially enigma

- Zuse Z3 (1941/Germany)
 - Electro-mechanical
 - Used relays to store data
 - Use 35 mm film to program
 - To study airflow over wings in airplane design (and to keep its inventor from being drafted)
 - In principle: first programmable computer

- Atanasoff-Berry Computer (1942, US)
 - Solves large linear system, entered by punched cards
 - Electronic, uses capacitor memory

- Colossus Mark 1
 - Follow up on the Bombe
 - Uses vacuum tubes
 - Special purpose machine to solve a problem posed at Bletchley Park
- Subsequentially improved
 - End of WW2: 10 Mark 2 in commission for code breaking

- Harvard Mark 1 IBM ASCC (1944 US)
 - Electro-mechanical computer for war effort
 - Also used in the Manhattan project
 - Conceived by Aiken and built by IBM
 - Data entry by punched paper tape
 - Division took 15.3 sec

- ENIAC Electronic Numerical Integrator and Computer (1945)
 - First programmable, electronic, general-purpose computer
 - Primarily used to calculate artillery firing tables
 - Also used to study feasibility of thermonuclear weapons
 - Calculated a trajectory in 30 seconds vs. 20 hours
 - Speed-up of 2400 : 1

- Manchester Baby -- Small-Scale Experimental Machine (UK, 1948)
 - Test-bed for the Willams tube
 - General purpose computer
 - Predecessor to the Manchester Mark 1, which was the prototype to the Ferranti Mark 1
 - The world's first commercially available generalpurpose computer