
Laboratory 4: Functions

(1) Write a function of x that calculates the expression � .

(2) Write a function of n that calculates � . If n is negative, the function returns 0, if n

is zero, then it returns 1.

(3) Write a function of n and m that prints out the n by m grid on the right.

(4) Write a function that prints out m asterisks followed by 2n spaces,
followed by m asterisks. Then use this function repeatedly to print out the
pattern on the left.

(5) Write a function of n that calculates the number of divisors of n exclusive 1 and n. (Just try
out all numbers between 1 and n. Later, we will talk about more sophisticated methods.)

(6) Create a function of a sum, the annual interest rate, and a number of years that calculates
the value of the sum after the stated number of years receiving annual interest payments.
Create another function that accumulates interests every month with 1/12 of the rate. Write
a program that for a sum of 10000 and interest rate between 2% and 5% shows the
accumulated amount after 20 years.

(7) It is possible for a function that calls itself. For example, we have

�

 for positive n. In order to use this formula, we also need a base case, namely � . We
can implement this in Python by:

def rfac(n):
 if n<= 0:
 return 1

x2 + 1
x2 + 2

n

∑
ν=0

1 + ν
1 + ν2

n! = n × (n − 1)!
0! = 1

+-+-+-+
| | | |
+-+-+-+
| | | |
+-+-+-+
| | | |
+-+-+-+
| | | |
+-+-+-+
| | | |
+-+-+-+
| | | |
+-+-+-+

**** ****
*** ***
** **
* *
** **
*** ***
**** ****

 else:
 return n*rfac(n-1)

	

	 We can use the same pattern in order to calculate the Fibonacci numbers 0, 1, 1, 2, 3,
5, 8, 13, 21, … defined recursively as

 �

Your task is to implement the Fibonacci numbers using a recursive (i.e. self-calling) function.
What do you observe when you calculate larger Fibonacci numbers?

fib0 = 0,fib1 = 1,fibn = fibn−1 + fibn−2

