Midterm 1
Preparation 1

Highlights from what we have seen so far
including a list of typical errors to avoid

Variables, Operations,
Types

e Every variable in Python has a type
e But the type is not declared

e The same variable name can stand for objects of
different types

e \We can change between types by casting

Variables, Operations,
Types

e Pattern 1:
e Processing user input
e The input function returns a string

e \We often need to cast this string into another type

km = input ("Enter distance 1in kilometers: ")
km = float (km)
print ("The distance 1in miles 1s {:4.3f} miles".format (km*0.621371))

e In this sample, the type of km switches from string to
float.

Variables, Operations,
Types

e The meaning of operands can depend on the type
e Example: print (a*b)

e |f both a and b are numerical types (int or float) then the
asterisk is a multiplication

e |f one is a string and the other an integer, then the
asterisk stands for a replication operation

Flow Control

 Python uses if-statements and for- and while-loops for
flow control

* Python blocks are defined by indentation

e |ndentation needs to be consistent within a Python
module

Flow Control

* |Indentation matters a lot

choice = 1nt (input ("Enter a number between 1 and 3 "))
1f choice !'= 1:
1f choice == 2:
print ("Well chosen")
else:
print ("Horrible choice")

choice = 1nt (input ("Enter a number between 1 and 3 "))
1f choice !'= 1:
1f choice ==
print ("Well chosen")
else:
print ("Horrible choice")

* The placement of the else decides to which if it belongs!

Flow Control

 The range-function creates an iterator

e There is no problem having a horribly large range
because no memory is wasted

e The first argument is the start (no problem here)

e Defaultis O

* The second and sometimes only argument is the stop
value, not the last value

 The third argument is the stride, this can be negative

Flow Control

e Almost any expression can be automatically converted
into a boolean value

e This is perfectly legitimate

def successor (n): if nis odd, n%2 is 1, and
1f n%2: therefore True
return 3*n+l1
else:

return n//2

* For odd n we multiply by three and add one

* For even n we divide by 2 (as integers)

Flow Control

e |f you want to test whether a list is not empty, the
Pythonesque way is to say:

1f lista:
print (“"list 1s not empty”)

Flow Control

e While loops:
e While the condition is true, execute the while-block

e A frequent error is to forget to update the condition

def sum(n) :
counter = 1
accu = 0
while counter < 10:
accu + 1/ (counter**2+counter + 1)
return accu

e This while loop never terminates because the
condition is always true and never changes

Flow Control

e Breaking out of a while loop:

e \We can break out of the while loop by using the
command break

* \We can break out of the current execution of the while
loop, and continue with the next execution of the while
loop using the command continue

Flow Control

e Pattern:
e Calculating sums and products

e Use an accumulator (the sum or product) properly
initialized

e O for summing, 1 for multiplying

e Add inside a for loop

Flow Control

100

e Calculating) i*=1+16+...+ 100000000
i=1

def sum() : Initializing the accu to zero, because

accu = 0 we are summing up
for 1 in range(l, 101):

accu += 1**4

return accu i
This is the stop value, the sum only

goes to 100

Accumulating into the accumulator
Returning the value outside of the for
loop

Functions

* Python functions are a vast subject.
e Up till now, we only see a small part of it.

 Functions are defined using the def command, followed by
the function name, and a pair of parameters that encloses a
potentially empty list of parameters.

e | ater, we will learn how to
e Define anonymous functions
e Use named arguments
» Use variable number of arguments

e Expand lists and dictionaries into arguments

Functions

o Pattern:
e Transformations

e Change measurements
Function Name

def km2m (km) : |
| return km*0.621371 List of parameters

Return value calculated in return
statement

