
Midterm 1
Preparation 2

Lists, Strings, and Files

Strings
• Strings are immutable

• Strings cannot be changed, but we can build new
strings from old ones

• Because building strings as strings is expensive, we
should get used to building strings as lists, and then
convert in one step to strings

String Modification Pattern
• A function that takes a string and then returns the same

string with all instances of ‘a’ preceded and followed by
an underscore

• Example:

• ‘Amazonas Territory’ becomes

• '_A_m_a_zon_a_s Territory'

String Modification Pattern
• Solution:

def undera(string):
 result = []
 for letter in string:
 if letter == 'a':
 result.append('_a_')
 elif letter == 'A':
 result.append('_A_')
 else:
 result.append(letter)
 return "".join(result)

Define an empty list to
contain the components
of the return value

Go through the argument
string character by
character

Build the result
component by component

Use the “”.join() in order
to return a string instead
of a list

String Processing
• We can make use of the numerous methods for

programming tasks involving strings and list

• The keyword “in” can be used to test membership

• Test whether an “at” character is in a string:

• By the way, this is not a very exhaustive test for a
string being an email address

def test_email(string):
 return '@' in string

String Processing
• Testing whether a string is an IPv4 (Internet Protocol

version 4) address

• IPv4 addresses consists of four fields separated by
periods

• Each field has to be a number between 0 and 256.

String Processing
• Testing whether a string is an IPv4 address

• First we break the string apart around periods to obtain
the four fields

• If we do not get four fields, it is not an IPv4 address

• We then test whether the four fields are integers. If not,
its not an IPv4 address

• We then test whether the numbers are smaller than 0 or
larger than 256. If it is, then it is not an IPv4 address

• Now the string has passed all tests and we can certify
that it is an IPv4 address

String Processing
• We develop the program step by step

• We check for reasons to return False

• If we cannot find a reason, we return True

def test_ipv4(string):
 # Here we test for all reasons that
 # the string is not an IP address
 return True

String Processing
• We develop the program step by step

• We use strip with ‘.’ as the separator

• We then check for the number of fields

def test_ipv4(string):
 fields = string.split('.')
 if len(fields)!=4:
 return False

more tests
 return True

String Processing
• We develop the program step by step

• We tests whether all fields consist of digits

def test_ipv4(string):
 fields = string.split('.')
 if len(fields)!=4:
 return False
 for field in fields:
 if not field.isdigit():
 return False
 return True

String Processing
• We develop the program step by step

• If all fields are digits, we convert the field to an integer
and check whether it is between 0 and 256.

def test_ipv4(string):
 fields = string.split('.')
 if len(fields)!=4:
 return False
 for field in fields:
 if not field.isdigit():
 return False
 else:
 number=int(field)
 if number < 0 or number > 256:
 return False
 return True

Files
• To access files, we need to open and close the files.

• The standard way is the with-construct that automatically
closes the file

• We open the file in read (default) or write mode

• There is also a distinction between text (default) and
binary.

• To open a file for reading, we just use

• with open(“/Users/thomasschwarz/
Documents/test.txt”) as infi:

Files
• Here we process a text file that contains potential IPv4

addresses

• It is important to strip the line.

def process_file(filename):
 with open(filename) as infi:
 for line in infi:
 string = line.strip()
 print("{:20s} {:6s}”.format(
 string, str(test_ipv4(string))))

1,9,0,0
1.0.0.0
234.23.a67.5.23
25.31.109.23
356.21.2.5
0.3.a5.6.7

