
Comprehension
Thomas Schwarz, SJ

Marquette University

Programming Styles
• Styles of Programming

• Imperative Programming:

• Describe in detail how computation proceeds

• Basically, change states of variables

• This is what we practiced up till now

Programming Styles
• Functional Programming

• Define functions

• Specify program behavior by executing nested
functions

• Pure functional programming: No variables that
capture a state

• Advantage: Easier to prove programming correctness

Programming Styles
• Declarative Programming

• Specify what a program should do

• System figures out how to do it.

• Example 1: Prolog (Classic AI programming language)

• Specify rules in Prolog:

• animal(X) :- cat(X) means every cat is an animal

• ?- cat(tom). means that tom is a cat

• You can ask about the world defined by these rules

• ?- animal(X). asks for what things are animals

• Prolog consists of rules and base facts, then on its own finds out
other facts.

Programming Styles
• Declarative Programming:

• Example 2: SQL — Database Language

• Database consists of relations stored in various
tables

• Example:

Marquette_ID First_Name Family_Name Address
123123007 David Roy 1984 31st Street, Milwaukee, WI 54321

97007007 Thomas Schwarz 4821 Wisconsin Ave, Milwaukee, WI 54213

14309873 Joseph Cuelho 9821 12th Avenue, Milwaukee, WI 54321

90874132 Donald Drumpf 321 Pennsylvania Ave, Madison, WI 32451

Programming Styles
• Declarative Programming:

• Example SQL:

• SQL statement describes all combinations of record
pieces

SELECT first_name, family_name FROM
addresses, classes

WHERE classes.name = “COSC1010” and
classes.role = “instructor” and
classes.id = addresses.id

http://classes.id
http://addresses.id

Programming Styles
• Declarative Programming:

• Example SQL:

• SQL statement describes all combinations of record
pieces

• How the database engine performs the query is not
specified

• In fact, for complicated queries, the database will try
out several ways before selecting the actual
algorithms

Programming Styles
• Object-Oriented Programming

• Program defined various objects

• Objects have data and methods

• E.g. Marquette Persons have IDs, names,
addresses, …

• Classes have lists of participants

• We will learn Object-Oriented (OO) programming in this
class

Comprehension
• List comprehension is used in functional programming but

it becomes handy

• We define a list with a for clause within the brackets
that define the list.

• Here are two ways to construct a list consisting of
squares

lista = []
for i in range(100):
 lista.append(i**2)

lista = [i**2 for i in range(100)]

Comprehension
[x**2 for x in range(100)]

output
expression

generator
expression variable list

(or list-like expression)

Self Test
• The following code fragment defines a list of elements

• Use list comprehension in order to generate the same list

• Use the interactive window in IDLE

Self Test

Pause the presentation until you
have solved the problem

Self Test Solution

Comprehension
• List comprehension can add an if-condition

• Result is now all even squares.

[x**2 for x in range(100)]if x%2 == 0

Comprehension
• List comprehension can be quite involved

• Remember that we can check for types of variables

• We use the built-in function isinstance()

• Example: is True

• Application to list comprehension: Squaring the
elements of a list (a_list) that are integers

isinstance(345, int)

Comprehension
• We can nest comprehensions

• A list of all composite numbers between 2 and 100.

• A composite number is a product of two integers i and j
that are larger than 1.

• However, the result contains many repeated numbers

[i*j for i in range(2,51) for j in range(2,101) if i*j < 100]

[4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,
68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51,
54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68,
72, 76, 80, 84, 88, 92, 96, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 12, 18, 24, 30, 36, 42,
48, 54, 60, 66, 72, 78, 84, 90, 96, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 16, 24, 32, 40, 48, 56, 64, 72, 80,
88, 96, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 20, 30, 40, 50, 60, 70, 80, 90, 22, 33, 44, 55, 66, 77, 88, 99, 24, 36, 48,
60, 72, 84, 96, 26, 39, 52, 65, 78, 91, 28, 42, 56, 70, 84, 98, 30, 45, 60, 75, 90, 32, 48, 64, 80, 96, 34, 51, 68, 85, 36,
54, 72, 90, 38, 57, 76, 95, 40, 60, 80, 42, 63, 84, 44, 66, 88, 46, 69, 92, 48, 72, 96, 50, 75, 52, 78, 54, 81, 56, 84, 58,
87, 60, 90, 62, 93, 64, 96, 66, 99, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98]

Comprehensions
• Luckily, we can use a set instead:

• The difference is just curly brackets instead of rectangular
brackets

• The result is now simpler:

{i*j for i in range(2,51) for j in range(2,51) if i*j < 100}

{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25,
26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44,
45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62,
63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80,
81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96,
98, 99}

Comprehensions
• We can now get all of the prime numbers between 2 and

100 by using this set, using comprehension on top of
comprehension

• This is cool but will not win any price for clarity

• You can make it more comprehensible if you define a set
of composite numbers before using it

{i for i in range(2,100) if i not in
{i*j for i in range(2,51) for j in range(2,51) if i*j < 100}}

Self Test
• Use the previous example to generate a set of all

numbers between 1 and 100 (included) that are not
squares

Self Test Solution

seta = {i for i in range(1,101) if i not in {i*i for i in range(10)}}

Comprehensions
• You can also use comprehension on dictionaries

• Here is how you create a dictionary that associates
integers up to 100*100 to their square root

• {i*i: i for i in range(101)}

Comprehensions
• And here is how you can try to “invert” a dictionary where the

roles of keys and values are swapped

• This one works well, because the values are different for
different keys

• And this one inverts with some arbitrariness

drev = {d[key]:key for key in d}

Self Test
• You are given a function func that takes one integer

argument

• You want to create a memoization dictionary that
associates i for i in range(100) with func(i)

Self Test Answer
mem_func = {i: func(i) for i in range(101)}

func = lambda x: 3*x+4

gives

Map, Filter

Map
• Map allows you to apply a function to all elements of a list

• Example:

• Why the list? map returns an iterator (so that it does not
waste memory on values that are not used)

func = lambda x: x+3
list(map(func, [2,3,4])

Filter
• You filter a list by applying a condition

• The result is the list formed by all elements that satisfy the condition

• You need to have a boolean function, i.e. a function that returns
True or False

• Here is an example of such a function:

• Returns True if x is divisible by 2

• Returns False otherwise

• x%2 is zero if and only if x is even

lambda x: x%2==0

Filter
• The function filter(function, sequence) return an

iterable of all elements in the sequence t that render the
function True.

