
The random module
Python

Marquette University

A Monte Carlo Method for
Area calculation

• Calculate the area of a circle of radius 1

• Can be done analytically:

• Can be done with Monte Carlo Method

• Use pseudo-random numbers in order to determine
values probabilistically

• Named after Stanislav Ulam

• Used for work on the thermo-nuclear device

A = r2 · ⇡

A Monte Carlo Method for
Area calculation

• Inscribe Circle with a square

• Circle:

• Square:

{(x, y)|x2 + y2 < 1}

{(x, y)|� 1 < x < 1,�1 < y < 1}

A Monte Carlo Method for
Area calculation

• Method:
• Choose n random

points in the square
• m points inside

circe

Area of Circle
Area of Square ⇡ m

n

Random Number
Generation

• Computers are deterministic (one hopes) and using a
deterministic device to generate randomness is not possible

• Modern systems can use physical phenomena

• Geiger counters for radioactive materials

• Atmospheric radio noise

• But for large sets of seemingly random numbers, use
pseudo-random number generators

• Create deterministically based on a seemingly random

seed output that passes statistical tests for
randomness

Random Number
Generation in Python

• Sophisticated methods to generate seemingly
random sequences of numbers

• Part of a module called random

Interlude:
Python Modules

• Anyone can create a python module
• Just a file with extension .py
• In a directory in the Python path, which is set for the

OS
• Or just in the same directory as files that use the

module
• A module contains definitions of variables and functions

• Any python script that imports the module can use
them

Interlude: Python Modules
• Predefined modules

• Python defines many modules
• We already have seen math and os

• To use such a module, say
• import random

• in order to use the functions within random

Interlude: Python Modules
• If I just import the module random, then I can use

its functions by prefixing “random.”
•

Using the function random inside the module random

Interlude: Python Modules
• If I want to avoid writing the module name I can use

an “as” clause that redefines the name of the
module within the script

Using the same function in the same module,
but now after internally renaming the module

Interlude: Python Modules
• By using the “from — import” clause, I can use

variables and functions without repeating the
module name

Importing the two functions uniform and randint from
the random module.

Interlude: Python Modules
• I could even import everything from a module

• But this can create havoc if I defined a function
with the same name as a function in the module

A dangerous practice: Importing all
functions from a module

Random Module
• Important functions in the random module

• random.randint(a, b) Selects a random
integer between a and b (boundaries
included)

• random.uniform(a, b) Selects a random float
between a and b

• random.random() Selects a random number
between 0 and 1

A Monte Carlo Method for
Area calculation

• Method:
• Choose n random

points in the square
• m points inside

circe

Area of Circle
Area of Square ⇡ m

n

A Monte Carlo Method for
Area calculation

• Use random module
• random.uniform(-1,1) generates random

number between -1 and 1
• Generating 20 random numbers:

import random

for i in range(20):
 x = random.uniform(-1,1)
 y = random.uniform(-1,1)
 print("({:6.3f},{:6.3f})".format(x,y))

A Monte Carlo Method for
Area calculation

• We then only count those that are inside the circle

import random

def approx(N):
 count = 0
 for i in range(N):
 x = random.uniform(-1,1)
 y = random.uniform(-1,1)
 if x*x+y*y<1:
 count += 1
 return (4*count/N)

A Monte Carlo Method for
Area Calculations

• Since and the area of the box is 4
• we return

import random

def approx(N):
 count = 0
 for i in range(N):
 x = random.uniform(-1,1)
 y = random.uniform(-1,1)
 if x*x+y*y<1:
 count += 1
 return (4*count/N)

count
N

≈
Area Circle
Area Box

4count
N

A Monte Carlo Method for
Area calculation

• Need few random point to get a general idea
• Need lots to get any good accuracy
• Method of choice used to determine 6-dimensional

integrals for simulation of quantum decay where
accuracy is not as important as speed

A Monte Carlo Method for
Area calculation

• Your task:
• Determine the area between

the curves

• Hint: We draw points in the
rectangle [-1,1] x [0,1]

• (x,y) lies in the area if

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

y = x2

y = 1� x2

x2 < y < 1� x2

A Monte Carlo Method for
Area calculation

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

import random

N = int(input("Give the number of random points: "))
count = 0
for _ in range(N):
 x = random.uniform(-1,1)
 y = random.uniform(0,1)
 if x*x < y < 1-x*x:
 count += 1
print("The area is approximately", count*2/N)

Select random points in the box [-1,1] x [0,1]

Count the number of times that the point falls in
the area

Multiply the ratio count / #pts by the area of the
box, which is 2

Monte-Carlo Volume
Calculation

• Sometimes, Monte-Carlo is the method of choice
• When there is no need for super-precision
• When the volume is not easily evaluated using

analytic methods.

Volume Calculation
• A partially eaten donut

(1 − x2 + y2)
2

+ z4 < 0.2 and x − y < .9 and x + z < 0.1 and x + y < 1.8

Volume Calculation
• Monte Carlo:

• Select random points in the box -1.5<x<1.5,
-1.5<y<1.5, -1.5<z<1.5.

• Check whether they are inside the donut
• Count over total number is approximately area of

donut over area of box (which is 9).

Volume Calculation
• A partially eaten donut

(1 − x2 + y2)
2

+ z4 < 0.2 and x − y < .9 and x + z < 0.1 and x + y < 1.8
import random
import math

N = int(input("Give the number of random points: "))
count = 0
for _ in range(N):
 x = random.uniform(-1.5,1.5)
 y = random.uniform(-1.5,1.5)
 z = random.uniform(-1.5,1.5)
 if (1-math.sqrt(x**2+y**2))**2+z**4<0.2 and x-y<0.9 and x+z<0.1 and x+y<1.8:
 count += 1
print("The area is approximately", count*27/N)

Additional Exercises
• Find the area of

• Hint: First determine maximum and minimum
values for x and y

-1 0 1 2 3
-1

0

1

2

3

{(x, y)|(x� 2)2 + 3 ⇤ (y � 1)2 < 1}

