
Project 1
Part A:
In this project, we calculate the weekday given a date.

Python has a module datetime and a module calendar that provide the same functionality.
Your code has to be independent of these modules, though in fact, I will give you an
implementation using these modules so that you can test your code easily.

First, implement a function that returns a Boolean value depending on whether its only input, a
year, is a leap year. Your program should behave just like calendar.isleap(year).

import calendar
def is_leap_year(year):
 return calendar.isleap(year)

Second, you are to develop a function that calculates the number of days in the year that
precede a given date. The function should have result 0 for January 1st.

Third, you are to develop a function that calculates the number of days since January 1st 2016.
It only needs to cover years 2016 to 2020.

The test-function is

import calendar

def days_in_year(day, month, year):
 dt = datetime.datetime(year, month, day)
 newyear = datetime.datetime(2016, 1, 1)
 return dt.toordinal()-newyear.toordinal()

Fourth, given that the first of January 2016 is a Friday, use the preceding function to develop a
function that calculates the day of the week for a date in 2016 — 2020. You can do this by
calculating the number of days since January 1, 2016 and then use the modulo 7 operation
suitably shifted. The test code is below:

def dow(day, month, year):
 code = datetime.datetime(year, month, day).isoweekday()
 if code == 1:
 return "Monday"
 elif code == 2:
 return "Tuesday"
 elif code == 3:
 return "Wednesday"
 elif code == 4:
 return "Thursday"
 elif code == 5:
 return "Friday"
 elif code == 6:
 return "Saturday"
 elif code == 7:
 return "Sunday"

 else:
 return “error"

Fifth, you are to write a function that takes a string such as "6/15/2016 11:31:00 PM” and
changes it to “Wednesday 23:31:00”, i.e. that replaces the date with the day of the week and
the time to military time.

Part B:
Download the “Denver Crime Data” from Kaggle:

https://www.kaggle.com/paultimothymooney/denver-crime-data/
Store the unzipped .csv file. Filter the .csv file for entries that have “traffic accident” for their
offense category. In a new .csv file, write down the weekday of the accident and the time of the
accident rounded to the nearest hour.

Part C:

Once we know dictionaries, you can order the data in the new .csv file to give us a weekday and
an hour and count the number of traffic accidents in that hour in Denver during the reporting
period.

https://www.kaggle.com/paultimothymooney/denver-crime-data/

	Part A:
	Part B:
	Part C:

