
Midterm 2023 Solutions
Problem 1:

, so AB is a key

, so BC is a key

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

So, the only keys are AB and BC.

Consider the functional dependencies.

AB C has a key on the right side. BC A and BC D have a key on the rights side.

Boyce-Codd Normal Form: D E is a functional dependency, but D is not a key.

{A}+ = {A}
{B}+ = {B}
{C}+ = {C}
{D}+ = {DE}
{E}+ = {E}
{A, B}+ = {A, B, C, D, E}
{A, C}+ = {A, C}
{A, D}+ = {A, D, E}
{A, E}+ = {A, E}
{B, C}+ = {A, B, C, D, E}
{B, D}+ = {B, D, E}
{B, E}+ = {B, E}
{C, D}+ = {C, D, E}
{C, E}+ = {C, E}
{D, E}+ = {D, E}
{A, B, C}+ = {A, B, C, D, E}
{A, B, D}+ = {A, B, C, D, E}
{A, B, E}+ = {A, B, C, D, E}
{A, C, D}+ = {A, C, D, E}
{A, C, E}+ = {A, C, E}
{A, D, E}+ = {A, D, E}
{B, C, D}+ = {A, B, C, D, E}
{B, C, E}+ = {A, B, C, D, E}
{B, D, E}+ = {B, D, E}
{C, D, E}+ = {C, D, E}
{A, B, C, D}+ = {A, B, C, D, E}
{A, B, C, E}+ = {A, B, C, D, E}
{A, B, D, E}+ = {A, B, C, D, E}
{A, C, D, E}+ = {A, C, D, E}
{B, C, D, E}+ = {A, B, C, D, E}

→ → →
→

Third Normal Form: Since D E is a functional dependency, but D is not a key, E would have
to be atomic. But E is not part of any key. So, this relation is not in Third Normal Form.

Fourth Normal Form: Since a relation in 4NF is in BCNF, and the relation is NOT BCNF, it
cannot be in 4NF either.

Problem 2:
CREATE DATABASE IF NOT EXISTS streaming;

USE streaming;

DROP TABLE IF EXISTS streaming_rate;

DROP TABLE IF EXISTS film;

DROP TABLE IF EXISTS rate;

DROP TABLE IF EXISTS language1;

DROP TABLE IF EXISTS category;

CREATE TABLE language1 (

 language_id INT PRIMARY KEY,

 name VARCHAR(60) NOT NULL,

 last_update_date DATE NOT NULL

);

CREATE TABLE category (

 category_id INT PRIMARY KEY,

 name VARCHAR(60) NOT NULL,

 last_update_date DATE NOT NULL

);

CREATE TABLE rate (

 rate_id INT PRIMARY KEY,

 name VARCHAR(60) NOT NULL,

 currency VARCHAR(60) NOT NULL,

 amount DECIMAL(10 , 2) NOT NULL CHECK(amount > 0)

);

CREATE TABLE film (

 film_id INT PRIMARY KEY,

 title VARCHAR(60) NOT NULL,

 release_year CHAR(4) NOT NULL,

 language_id INT NOT NULL,

 category_id INT NOT NULL,

 last_update_date DATE NOT NULL,

 FOREIGN KEY (language_id)

 REFERENCES language1 (language_id)

 ON UPDATE CASCADE ON DELETE RESTRICT,

 FOREIGN KEY (category_id)

 REFERENCES category (category_id)

 ON UPDATE CASCADE ON DELETE RESTRICT

);

CREATE TABLE streaming_rate (

	 film_id INT,

→

 location_country VARCHAR(60) NOT NULL,

 rate_id INT,

 first_day DATE,

 last_day DATE,

 PRIMARY KEY(film_id, rate_id, first_day),

 FOREIGN KEY (film_id)

 REFERENCES film (film_id)

 ON UPDATE CASCADE ON DELETE RESTRICT,

	 FOREIGN KEY (rate_id)

 REFERENCES rate (rate_id)

 ON UPDATE CASCADE ON DELETE RESTRICT

);

Problem 3:
(a)

SELECT DISTINCT

 productScale

FROM

 Products;

(b)

SELECT

 productName, buyPrice, MSRP

FROM

 Products

WHERE

 productScale = ‘1:10';

(c)

SELECT

 productName, ROUND(100* MSRP/buyPrice-100,2) AS markup

FROM

 Products

WHERE

 productScale = ‘1:50';

(d)

SELECT

 productScale, MAX(MSRP)

FROM

 Products

GROUP BY

 productScale;

(e)

SELECT

 *

FROM

 PRODUCTS

WHERE

 MSRP = (SELECT

 MAX(MSRP)

 FROM

 Products)

;

(f)

SELECT

 p.productname, p.productScale, p.buyPrice, p.MSRP

FROM

 products p

 JOIN

 (SELECT

 productscale, MAX(MSRP) AS mmsrp

 FROM

 Products

 GROUP BY productscale) tmsrp ON msrp = mmsrp

;

(g)

SELECT

 customers.customerName,

 payments.checkNumber,

 payments.amount,

 payments.paymentDate

FROM

 customers

 JOIN

 payments USING (customerNumber)

WHERE

 payments.amount < 2000;

(h)

SELECT customerName, SUM(amount)

FROM

payments p INNER JOIN customers c

USING (customerNumber)

GROUP BY

p.customerNumber

ORDER BY Sum(amount) DESC

LIMIT 5;

(i)

SELECT

 c.customerName, c.country

FROM

 offices o

 INNER JOIN

 employees e USING (officecode)

 INNER JOIN

 customers c ON (c.salesRepEmployeeNumber = e.employeeNumber)

WHERE

	 o.country = "USA";

(j)

SELECT

 c.customerName

FROM

 productLines pl

 INNER JOIN

 products p USING (productLine)

 INNER JOIN

 orderdetails od USING (productcode)

 INNER JOIN

 orders o USING (orderNumber)

 INNER JOIN

 customers c USING (customerNumber)

WHERE

 pl.textDescription LIKE '%replicas%';

	Problem 3:

