KRS

OO

mple Database

Install Sample Database

e Goto

e https://www.mysqltutorial.org/mysql-sample-
database.aspx

e Should download an sql file

Install Sample Databases

e Method 1:

e Open MySQL Workbench
e Connect to MySQL server
e File —> Run SQL script

e Choose the downloaded file

Install Sample Databases

e Method 2
e Connect to the MySQL server with a terminal
mysqgl -u root -p
e Should prompt for your password

e Use the source program

source c:\myPath\to\myfile

e Check with

show databases;

productlines products orderdetails
* productLine * productCode * orderNumber
textDescription productName * productCode
htmiDescription H productLine quantityOrdered
image productScale priceEach
productVendor orderLineNumber
productDescription
quantitylnStock il
employees buyPrice
* employeeNumber = MSRP
lastName
firstName 4
extension -
EInaN customers orders
officeCode * orderNumber
reportsTo S0— - CESENROTERETRE ¥ orderDate
jobTitle CustomerName requiredDate
- contacthastName shippedDate
contactFirstName status
phone . comments
offices addressLine1 customerNumber
* officeCode addressLine2
city city
phone state
addressLine1 posta:ICode payments
; country
:tc;c:;essLlneQ salesRepEmployeeNumber _ COSENEHESETRION
r i * checkNumber
country creditLimit
paymentDate
postalCode —

territory

Install Sample Databases

* You can download the diagram and bring a printed copy
to the next class

SQL

Repetition

Creating Schemas
Inserting
Selection

Constraints

Data Definition
Language

SQL DDL

e Create a database with CREATE DATABASE

CREATE DATABASE IF NOT EXISTS UsSNavy;

SQL DDL

e Three type of tables in SQL
e Stored Relations, called tables
* \Views: relations calculated by computation

 Jemporary tables: created during query execution

SQL DDL

e Data Types
* Character strings of fixed or varying length
e CHAR(n) - fixed length string of up to n characters
* VARCHAR(n) - fixed length string of up to n characters

 Uses and endmarker or string-length for storage
efficiency

e Bit strings
* BIT(n) strings of length exactly n
 BIT VARYING(n) - strings of length up to n

SQL DDL

e Data lTypes:
e Boolean: BOOLEAN: TRUE, FALSE, UNKNOWN
e Integers: INT = INTEGER, SHORTINT
e Floats: FLOAT = REAL, DOUBLE, DECIMAL(n,m)
 Dates: DATE
e SQL Standard: ‘1948-05-14")
e Times: TIME
e SQL Standard: 19:20:02.4

SQL DDL

e Data lTypes:

e MySQL: ENUM('M', 'F")

SQL DDL

e CREATE TABLE creates a table

CREATE TABLE Movies (

title CHAR (100),
year INT,
length INT,
genre CHAR(10),

studioName CHAR (30),
producerC# INT

SQL DDL

CREATE TABLE MovieStar (

name CHAR (30),
address VARCHAR (255),
gender CHAR (1),

birthday DATE

SQL DDL

* Drop Table drops a table

DROP TABLE Movies;

SQL DDL

* Altering a table with ALTER TABLE
o with ADD followed by attribute name and data type
* with DROP followed by attribute name

ALTER TABLE MovieStar ADD phone CHAR(1606);

ALTER TABLE MovilieStar DROP Birthday;

SQL DDL

e Default Values
e Conventions for unknown data

e Usually, NULL

e (Can use other values for unknown data

CREATE TABLE MovieStar (

name CHAR (30),
address VARCHAR (255),
gender CHAR (1) DEFAULT '?',

birthday DATE DEFAULT '0000-00-00"
) ;

SQL DDL

 Declaring Keys
1. Declare one attribute to be a key
2. Add one additional declaration:
e Particular set of attributes is a key
e Canuse
1. PRIMARY KEY
2. UNIQUE

SQL DDL

UNIQUE for a set S:

 Two tuples cannot agree on all attributes of S unless
one of them is NULL

 Any attempted update that violates this will be
rejected

PRIMARY KEY for a set S:
e Attributes in S cannot be NULL

SQL DDL

CREATE TABLE MovieStar (

name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
gender CHAR (1),

birthday DATE

SQL DDL

CREATE TABLE MovieStar (

name CHAR (30),

address VARCHAR (255),

gender CHAR (1) DEFAULT '?',
birthday DATE DEFAULT '0000-00-00",

PRIMARY KEY (name)

SQL DDL

CREATE TABLE Movies (

title CHAR (100),
year INT,
length INT,

genre CHAR(10),

studioName CHAR (30),
producerC# INT,
PRIMARY KEY (title, vyear)

Simple Diagrams

* A schema is represented by a networked diagram
* Nodes represent tables
* Name of the table labels the node
* Interior of the node are the name of the attributes
 Underline the primary key

 Optionally, add domain to each attribute

Simple Diagrams

Sales

purchase_number : int
date_of_purchase : date
customer_id: int
item_code: varchar(10)

ltems

item code :
item :
unit_price:

company_id:

Customers

customer_id: int

first_name : varchar(255)

last_name : varchar(255)

email_address : varchar(10)

number of complaints : int

Companies

int company_id : int
varchar(255) company_name : varchar(63)
decimal(10,2) headquarters_ph_nr: char(25)
int

Constraints in MySQL

e Constraints in MySQL have names
e Often automatically generated

 Use the SHOW CREATE TABLE query

Table, "Create Table"

customers, "CREATE TABLE customers (
\Customer_id\ int NOT NULL AUTO INCREMENT,
"first name varchar(255) DEFAULT NULL,
"last name varchar(255) DEFAULT NULL,
"emall address varchar (255) DEFAULT NULL,
‘number of complaints int DEFAULT (0),
PRIMARY KEY (\Customer_id\),
UNIQUE KEY "email address (emaill address)

) ENGINE=InnoDB AUTO INCREMENT=3 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4 0900 ai ci"

Constraints in MySQL

 Missing values are usually a NULL
e Can automatically assign INT with AUTO_INCREMENT

e Used widely to assign artificial primary keys

Constraints in MySQL

e NOT NULL constraint

* When inserting a tuple with NULL value in the
constrained column, error will be thrown

CREATE TABLE tasks (

1d AUTO INCREMENT PRIMARY KEY,
title (255) NOT NULL,

start date NOT NULIL,

end date

) ;

 Considered good practice to include in all columns
where a NULL value is not expected

Constraints in MySQL

e ALTER TABLE allows to introduce new / remove old
constraint

* Need to check that the inserted values comply

ALTER TABLE tasks
CHANGE
end date
end date DATE NOT NULL;

ALTER TABLE tasks
MODIFY
end date
end date DATE NOT NULL;

Constraints in MySQL

 UNIQUE
* Values in a single attribute are different
* Value groups in a group of attributes are different
* Creating a constraint:
e Specify in CREATE TABLE for a single attribute
e Add a CONSTRAINT cstr_name UNIQUE(attr1, attr2, ...)

* (Can leave out constraint name, will be replaced by an
automatically created name

e Use ALTER TABLE ADD CONSTRAINT

Constraints in MySQL

 UNIQUE

CREATE TABLE suppliers (
supplier id INT AUTO INCREMENT,
name VARCHAR (255) NOT NULL,
phone VARCHAR (15) NOT NULL UNIQUE,
address VARCHAR (255) NOT NULL,
PRIMARY KEY (supplier id),
CONSTRAINT uc name address UNIQUE (name , address)

Constraints in MySQL

e UNIQUE constraint creates an index

 |ndex is a data structure with quick look-up

* Access indices through the SHOW INDEX FROM table
command

Result Grid | Filter Rows: Q Export: |:| .

Table Non_unique Key_name Seq_in_index Column_name Collation Cardinality Sub_part Packed Null Index_type Comment In... Visible Expres: Résydlt
ri

customers 0 PRIMARY 1 customer_id A 1 [HULL | [HULL | BTREE YES [HULL |

customers 0 email_address 1 email_address A 1 [HULL | [HULL | YES BTREE YES [HULL |

Result 3 Result 4 Result 5 © Read Only

Foreign Keys

* Relationships between tables are sometimes constructed
with shared values

e Sales has an attribute client _id
e Customers has a primary key client_id
e Need not be named the same

e But it is usually convenient to do so

onstraints in My

Sales

purchase number :
date_of_purchase :
customer_id:
item_code:

Customers
H- customer id : int
first_name : varchar(255)
last_name : varchar(255)
email_address : varchar(10)
int number of complaints : int
date
int (FK) >0————
varchar(10) (FK) P°—
ltems
Companies
H item_code : int g .)
item : varchar(255) 7| company_id : Int
unit_price: decimal(10,2) company_name : varchar(63)
company_id: int (FK) >0—— headquarters_ph_nr: char(25)

Constraints in MySQL

e Example:
* A customer can have many sales
 But each sale has only one customer

* Relationship customers sales is a one-to-many
relationship

* customers is the referenced (or parent) table

e sales is the referencing (or child) table

* As is typical, the referenced attribute is a primary key in
the referenced table

onstraints in My

Sales

purchase number :
date_of_purchase :
customer_id:
item_code:

Customers
H- customer id : int
first_name : varchar(255)
last_name : varchar(255)
email_address : varchar(10)
int number of complaints : int
date
int (FK) >0————
varchar(10) (FK) P°—
ltems
Companies
H item_code : int g .)
item : varchar(255) 7| company_id : Int
unit_price: decimal(10,2) company_name : varchar(63)
company_id: int (FK) >0—— headquarters_ph_nr: char(25)

Constraints in MySQL

* |n a diagram:
e crow-feet with ball indicate many

e double bar indicates one

Constraints in MySQL

* Foreign key constraint

e Once established, insures that action is taken upon
insertion or deletion of a record affecting the other table

Constraints in MySQL

e Possible Actions:

e CASCADE: if atuple from the referenced table is
deleted or updated, the corresponding tuple in the
referencing table is also deleted / updated

e SET NULL: If a row from the referenced table is deleted
or updated, the values of the foreign key in the
referencing table are set to NULL

Constraints in MySQL

e Possible Actions:

e RESTRICT: if a row from the referenced table has a
matching row in the referencing table, then deletion
and updates are rejected

e SET DEFAULT: Accepted by MySQL parser but action
not performed

Constraints in MySQL

* Foreign keys constraint actions
e Are for

* ON UPDATE

e ON DELETE

Constraints in MySQL

» Creating foreign key constraints:
CREATE TABLE categories (

categoryId INT AUTO INCREMENT PRIMARY KEY,

categoryName VARCHAR(100) NOT NULL
) ;

CREATE TABLE products (

productId INT AUTO INCREMENT PRIMARY KEY,
productName varchar (100) not null,
categoryId INT,
CONSTRAINT fk category
FOREIGN KEY (categoryId)

REFERENCES categories (categoryId)

ON UPDATE CASCADE

ON DELETE CASCADE

Constraints in MySQL

* You can drop a foreign key restraint using the ALTER
TABLE statement

ALTER TABLE table name
DROP FOREIGN KEY constraint_name;

Constraints in MySQL

* When loading a database from (e.g.) .csv files

e (Can carefully create referenced tables before
referencing tables

 Temporarily disable foreign key checks

SET foreign key checks = 0;

SET foreign key checks = 1;

Insert Operations

e Insert Syntax
e No need to insert into automatic values

. .
If only a few attributes are set, INSERT INTO

table (attrl, attr2, ..)
Values (vl, v2, ..)

e |f all attributes are set, just list the values

e Can set many tuples at once

INSERT INTO served

VALUES

('"William Howe', 'Great Britain', '1746-1-1', '1778-4-1"),
('Benedict Arnold', 'Great Britain', '1757-1-1', '1775-1-1"),
('Benedict Arnold', 'United States', '1775-1-1', '1780-9-1"),
('Benedict Arnold', 'Great Britain', '1780-9-1', '1787-1-1")

Select

Select

* |In order to avoid having to prefix the database name to
tables, use the Use command:

¢ USE classicmodels;

Select

e SELECT * FROM table
e SELECT coll, col2 FROM table
e SELECT * FROM table WHERE conditions

®@ O
mysql> SELECT lastName FROM employees;

lastName

-
L)
L
L]

Murphy
Patterson
Firrelli
Patterson
Bondur
Bow
Jennings
Thompson
Firrelli
Patterson
Tseng
Vanauf
Bondur
Hernandez
Castillo
Bott
Jones
Fixter
Marsh
King

.

v

e
L]

Select

thomasschwarz — mysq

Select

* You do not need to specify a table to obtain values

mysql> SELECT 2x3+1;

1 row in set (0.01 sec)

mysql> SELECT NOW();

o et
| NOW() |
+o et
| 2023-02-22 21:01:03 |
o et

1 row in set (0.00 sec)

Select

 To make SELECT list work you can use the dummy table
name dual

e To rename expressions, use AS

iimysql> SELECT firstName AS baptismal_name
-> FROM
-> employees;

baptismal_name

| |
| Diane |
| Mary I
| Jeff |
| William |
| Gerard |
| Anthony |
| Leslie |
| Leslie |
| Julie |
| Steve |

™o - - r

Select

. O thomasschwarz — mysql -u root -p — 93x33

mysql> SELECT
- CONCAT_WS("' ', firstname, lastName) AS 'Full Name'
-> FROM
-> emp loyees;

Full Name

Diane Murphy
Mary Patterson
Jeff Firrelli
William Patterson
Gerard Bondur
Anthony Bow
Leslie Jennings
Leslie Thompson
Julie Firrelli
Steve Patterson
Foon Yue Tseng
George Vanauf
Loui Bondur
Gerard Hernandez
Pamela Castillo
Larry Bott
Barry Jones
Andy Fixter
Peter Marsh

Tom King

Mami Nishi
Yoshimi Kato
Martin Gerard

 ————— e — 4

) e —————————————— — ¢

J
}
)
)
)
}
)
)
+
>
>
>
)
)
)
-

Select

Use ordering with ORDER BY and ASC / DESC

. O thomasschwarz — mysql -u root -p — 80x24

mysql> SELECT firstName, lastName, email
-> FROM employees
-> ORDER BY
-> lastName DESC,
-> firstName ASC;

- - - -
L) L) L)

| firstName | lastName | email |

George	Vanauf	gvanauf@classicmodelcars.com
Foon Yue	Tseng	ftseng@classicmodelcars.com
Leslie	Thompson	lthompson@classicmodelcars.com
Mary	Patterson	mpatterso@classicmodelcars.com
Steve	Patterson	spatterson@classicmodelcars.com
(William	Patterson
Mami	Nishi	mnishi@classicmodelcars.com
Diane	Murphy	dmurphy@classicmodelcars.com
Peter	Marsh	pmarsh@classicmodelcars.com
Tom	King	tking@classicmodelcars.com
Yoshimi	Kato	ykato@classicmodelcars.com
Barry	Jones	bjones@classicmodelcars.com
Leslie	Jennings	ljennings@classicmodelcars.com
Gerard	Hernandez	ghernande@classicmodelcars.com
Martin	Gerard	mgerard@classicmodelcars.com
Andy	Fixter	afixter@classicmodelcars.com

-> FROM

SELECT
-> firstName, lastName, reportsTo

-> employees

—> ORDER BY reportsTo DESC;

firstName | lastName | reportsTo
| Yoshimi | Kato | 1621
| Leslie | Jennings | 1143
| Leslie | Thompson | 1143
| Julie | Firrelli | 1143
| Steve | Patterson | 1143
| Foon Yue | Tseng | 1143
| George | Vanauf | 1143
| Loui | Bondur | 1102
| Gerard | Hernandez | 1102
| Pamela | Castillo | 1102
| Larry | Bott | 1102
| Barry | Jones | 1102
| Martin | Gerard | 1102
| Andy | Fixter | 1088
| Peter | Marsh | 1088
| Tom | King | 1088
| William | Patterson | 1056
| Gerard | Bondur | 1056
| Anthony | Bow | 1056
| Mami | Nishi | 1056
| Mary | Patterson | 1002
| Jeff | Firrelli | 1002
| Diane | Murphy |

NULL

23 rows in set (0.00 sec)

Select

B e

NULL 1s always smallest

Select

e We use a WHERE clause in order to specify search
conditions

* Employees whose job title is '‘Sales Rep’

mysql> SELECT
-> firstName, lastName

-> FROM

-> employees

—> WHERE

—> jobtitle = 'Sales Rep';
firstName	lastName
Leslie	Jennings
Leslie	Thompson
Julie	Firrelli
Steve	Patterson
Foon Yue	Tseng
George	Vanauf
Loui	Bondur
Gerard	Hernandez
Pamela	Castillo
Larry	Bott
Barry	Jones

SELECT

e There are a number of comparison operators:
e = equals (comparison operator)
e AND, OR
 IN, NOTIN
 LIKE, NOT LIKE
e BETWEEN ... AND
e EXISTS, NOT EXISTS
e |S NULL, IS NOT NULL

Select

e Examples:

mysql> SELECT firstName, lastName
—> FROM employees
—> WHERE reportsTo IS NULL;

-t
Ll

firstName | lastName

-t

+ — + — 4+
+ — + — +

Diane | Murphy

v

[

row in set (0.00 sec)

Select

mysql> SELECT contactLastName AS 'Last Name', contactFirstName AS 'First Name', phone
—> FROM customers
—> WHERE country = 'Germany';

1 L
v v

Last Name	First Name	phone
Keitel	Roland	+49 69 66 90 2555
Kloss	Horst	8372-555188
Messner	Renate	069-0555984
Pfalzheim	Henriette	0221-5554327
Franken	Peter	089-0877555
Andersen	Mel	030-0074555
Cramer	Philip	©555-09555
Josephs	Karin	0251-555259
Muller	Rita	0711-555361
Donnermeyer	Michael	+49 89 61 @8 9555
Feuer	Alexander	©0342-555176
Ottlieb	Sven	0241-039123
Moos	Hanna	0621-08555

13 rows in set (0.00 sec)

Comparisons with NULL

* NULL in any expression gives NULL

e |f you compare anything with NULL in MySQL, you get
NULL

e |n other SQL dialects: depends

SELECT

e LIKE
e Pattern matching
 Wild cards
* % means zero or more characters
* _ means a single letter
 [] means any single character within the bracket
e A means any character not in the bracket

* - means a range of characters

Like Examples

WHERE name LIKE 't%'

e any values that start with 't’
WHERE name LIKE '%t'
 any values that end with 't’
WHERE name LIKE '%t%'

e any value witha 't' in it
WHERE name LIKE '_t%'

e any value with a 't' in second position

"

Select

 Beware of bad data when you make searches

mysql> SELECT contactLastName AS 'Last Name', contactFirstName AS 'First Name', phone
-> FROM customers
—> WHERE phone LIKE '+49 %';

=

L L

Last Name | First Name | phone

-

+ — + — +

!
i Keitel i Roland i +49 69 66 90 2555
i row in set'(0.00 sec) '

mysql> SELECT contactLastName AS 'Last Name', contactFirstName AS 'First Name', phone

-> FROM customers
—> WHERE phone LIKE '%+49 %';

Last Name	First Name	phone
Keitel	Roland	+49 69 66 90 2555
Donnermeyer	Michael	+49 89 61 08 9555
2 rows in set (0.00 sec)

SELECT

e BETWEEN ... AND ...
e Selects records with a value in the range

* endpoints included

mysql> SELECT orderNumber, orderDate, requiredDate, shippedDate
-> FROM orders
—> WHERE requiredDate between '2003-1-1' AND '2003-2-1';

. .
L v Ll v o

orderNumber | orderDate requiredDate | shippedDate
10100 | 2003-01-06 | 2003-01-13 2003-01-10
10101 | 2003-01-09 | 2003-01-18 2003-01-11
10102 | 2003-01-10 | 2003-01-18 2003-01-14

- -
L]

3 rows in set (0.01 sec)

+

+

.. -
e o

SELECT

e SELECT DISTINCT

mysql> SELECT DISTINCT country FROM customers;

.
L]

| country |

| France
| USA

| Australia
| Norway
| Poland
| Germany
| Spain
| Sweden
| Denmark
| Singapore
| Portugal
| Japan
| Finland
| UK

| Ireland

| Canada

| Hong Kong

| Italy

| Switzerland
| Netherlands
| Belgium

| New Zealand
| South Africa
| Austria

| Philippines
| Russia

| Israel

2

7 rows in set (0.00 sec)

SELECT

e LIMIT gives the maximum number of rows returned
e Can be used for a sample

e Can be used with ORDER BY ASC

Queries with more
than one Table

Naming Tables

e \WWe can name tables in the WHERE clause

SELECT
e.firstName,
e.lastName
FROM
employees e
ORDER BY e.filrstName;

Simple Joins

e Cartesian product of two tables is called CROSS JOIN:

officeCode city

NWHArOOOON=-NWHAOON

London
Sydney
Tokyo
Paris
NYC
Boston
San Francisco
London
Sydney
Tokyo
Paris
NYC
Boston

phone

+44 20 7877 2041
+61 2 9264 2451
+81 33 224 5000
+33 14 723 4404
+1 212 555 3000
+1 215 837 0825
+1 650 219 4782
+44 20 7877 2041
+61 2 9264 2451
+81 33 224 5000
+33 14 723 4404
+1 212 555 3000
+1 215 837 0825

SELECT

FROM

addressLinel

25 Old Broad Street
5-11 Wentworth Avenue

4-1 Kioicho

43 Rue Jouffroy D'abbans
523 East 53rd Street

1550 Court Place
100 Market Street

25 Old Broad Street
5-11 Wentworth Avenue

4-1 Kioicho

43 Rue Jouffroy D'abbans
523 East 53rd Street

1550 Court Place

*

offices
CROSS JOIN
products;

addressLine2 state

Level 7
Floor #2
HULL |
HULL |

apt. 5A
Suite 102
Suite 300
Level 7
Floor #2
HULL |
HULL |

apt. 5A
Suite 102

[HuLL |

HULL |
Chiyoda-Ku
HULL |

NY

MA

CA

[HULL |

[HULL |
Chiyoda-Ku
[HuLL |

NY

MA

country postalCode territory productCode

UK
Australia
Japan
France
USA
USA
USA

UK
Australia
Japan
France
USA
USA

EC2N 1HN EMEA
NSW 2010 APAC

102-8578 Japan
75017 EMEA
10022 NA
02107 NA
94080 NA

EC2N 1HN EMEA
NSW 2010 APAC

102-8578 Japan
75017 EMEA
10022 NA
02107 NA

S10_1678
S10_1678
S10_1678
S10_1678
S10_1678
S10_1678
S$10_1678
S10_1949
S10_1949
$10_1949
S$10_1949
$10_1949
S$10_1949

productName

1969 Harley Davidson Ultimate Chopper
1969 Harley Davidson Ultimate Chopper
1969 Harley Davidson Ultimate Chopper
1969 Harley Davidson Ultimate Chopper
1969 Harley Davidson Ultimate Chopper
1969 Harley Davidson Ultimate Chopper
1969 Harley Davidson Ultimate Chopper
1952 Alpine Renault 1300
1952 Alpine Renault 1300
1952 Alpine Renault 1300
1952 Alpine Renault 1300
1952 Alpine Renault 1300
1952 Alpine Renault 1300

productLine

Motorcycles
Motorcycles
Motorcycles
Motorcycles
Motorcycles
Motorcycles
Motorcycles
Classic Cars
Classic Cars
Classic Cars
Classic Cars
Classic Cars
Classic Cars

productScale productVendor

1:10
1:10
1:10
1:10
1:10
1:10
1:10
1:10
1:10
1:10
1:10
i
1:10

Min Lin Diecast
Min Lin Diecast
Min Lin Diecast
Min Lin Diecast
Min Lin Diecast
Min Lin Diecast
Min Lin Diecast
Classic Metal Cre:
Classic Metal Cre:
Classic Metal Cre:
Classic Metal Cre:
Classic Metal Cre:
Classic Metal Cre:

Simple Joins

* You can convert a cross join to an
inner join with a where clause

SELECT

productcode, comments

FROM
orderdetails orde

CROSS JOIN
orders ord

WHERE
orde.ordernumber =

ord.ordernumber

orderdetails

* orderNumber
* productCode

quantityOrdered
priceEach
orderLineNumber

m

W

4

R

orders

* orderNumber

orderDate
requiredDate
shippedDate
status

comments
customerNumber

Simple Joins

e But that just gives code harder to read

SELECT

productcode, comments
FROM

orderdetaills orde

INNER JOIN

orders ord

ON
orde.ordernumber = ord.ordernumber

Simple Joins

e \When the column names are the same, we can use the
USING clause

* Notice the parentheses

SELECT

productcode, comments
FROM

orderdetaills orde

INNER JOIN

orders ord
USING

(ordernumber)
WHERE

ord.comments IS NOT NULL;

Simple Joins

e You can also use the pre-1992 SQL92 notation

SELECT
productcode, comments

FROM
orderdetails orde, orders ord

WHERE
orde.orderNumber = ord.orderNumber

AND
ord.comments IS NOT NULL;

Simple Joins

e The SQL-92 is clearer whenever the joins are complex

SELECT

customerName, city, cus.country,
quantityOrdered*priceEach AS 'volume'
FROM

customers cus

INNER JOIN orders ord ON cus.customerNumber =
ord.customerNumber

INNER JOIN orderdetails orddet ON orddet.orderNumber =
ord.orderNumber
WHERE

ord.comments IS NOT NULL AND orddet.productCode =

'S18 2325

°
’

Simple Joins

employees
o . . * employeeNumber P&
* Self-joins: Use different table aliases aethame
ol
officeCode -
reportsTo -
jobTitle
SELECT
CONCAT (m.fi1rstName, ' ', m.lastName) AS manager,
CONCAT (e.firstName, ' ', e.lastName) AS managee
FROM

employees e
INNER JOIN employees m
ON
m.employeeNumber = e.reportsTo
ORDER BY manager;

* Find pairs of clients that are in the same city

SELECT

cl.city,

FROM

customers c¢cl INNER JOIN customers c2 ON

Simple Joins

cl.customerName,

cl.city =

AND cl.customerName > cZ.customerName

ORDER BY
cl.city

c2.clty

customers

* customerNumber

customerName
contactLastName
contactFirstName
phone
addressLine1
addressLine2

city

state

postalCode
country
salesRepEmployeeNumber
creditLimit

i+_

cZ2.customerName

™

Examples

e SQL has explicit commands for the various joins and
products

 Normally, combine tables by listing them in the FROM
clause

SELECT name
FROM movies, moviesExec
WHERE title = 'Star Wars'

AND movies.producerC# = moviesExec.cert#

Examples

e Find all movie execs that live with a star

MovieStar (name, address, gender, birthdate)
MovieExec (name, address, cert#, netWorth)

SELECT MovieStar.name, MovieExec.name)
FROM MovieStar, MovieExec
WHERE

MovilieStar.address = MovieExec.address

Examples

e Tuple Variables

e Sometimes need to combine two tuples in the same
table

e (Can extend the FROM clause

SELECT Starl.name, StarZ.name
FROM MovieStars Starl, MovieStars Star?
WHERE

Starl.address = Star?Z2.address

AND Starl.name < Star?Z2.name

Updates

Changes existing records
Syntax:

UPDATE tablename
SET attrl=vall, attr’Z2=val2, ..
WHERE conditions;

Does not need to change all attributes

If there is no WHERE condition, all records are updated

Commit and Rollback

A database allows us to rollback to a previous state
unless we have committed

e MySQLWorkbench has an auto-commit button

@ MySQL Workb
) Local instance 3306
= - =
& SEE&EL =
Administration Schemas # revolutionaryWar
SR w N % & B, % Limitto 50000rows B 1% <2 @ (1) (¥

= 14 e

 Rollback puts database into the state of the last
commit

Delete

e Just like an update

DELETE FROM tablename
WHERE condition

* The Where clause is not necessary

Delete, Drop, Truncate

 Drop Table:

e Definite action: cannot recover with rollback
e Truncate:

e All records removed

e Auto-increment values reset

* Table description stays
e Delete:

 Delete removes records row by row

e Auto-increment values remain

e Slower than truncate

Sub-Queries

Subqueries

e Subqueries are helper queries

Subqueries

e Subqueries producing a scalar value

e Example: Producer of Star Wars

SELECT name
From movies, movieExec

WHERE title = 'Star Wars'
AND
producerC# = cert#;

 Can achieve the same effect by first looking for the
producerC#

Subqueries

e Example: Producer of Star Wars

SELECT name

FROM movieExec

WHERE cert# =
(SELECT producerC#
FROM movies
WHERE title

)

'star wars'

* While the queries are different, their execution can be
the same

employees

* employeeNumber
lastName

Subqueries =

u] officeCode
reportsTo
jobTitle

e You can create sub-tables

offices

* officeCode

 Find employees working in the US phone

addressLine1

H addressLine2

* First: Find officeCodes with country = US| ==

country
postalCode

territory

SELECT
officeCode
FROM
offices
WHERE
country = 'USA';

employees

* employeeNumber
lastName
o< firstName

e Second: Connect employees to these office codes || s

postalCode
territory

SELECT
CONCAT (firstName, ' ', lastName) AS 'employee'
FROM
employees
WHERE
officeCode IN (employee
SELECT Diane Murphy

Mary Patterson

officeCode Jeft Firrell

Anthony Bow

FROM Leslie Jennings

Leslie Thompson

offices Julie Firrell
Steve Patterson
WH E RE Foon Yue Tseng

George Vanauf

country = 'USA'");

Subqueries

* Find the contact that made the largest payment

1

orders
customers
: * orderNumber
customerNumber orderDate
customerName + o9 requiredDate
S contactLgstName shippedDate
contactFirstName status
phone | comments
addresstne1 customerNumber
addressLine2
city
state
postalCode payments
country .
salesRepEmployeeNumber [11 = customerNumber
craditl kTl * checkNumber
paymentDate
amount

Subqueries

e Step 1:

* Need to find maximum payment

Subqueries

e Step 1:

 Need to find maximum payment

SELECT MAX (amount) FROM payments

Subqueries

e Step 2:
* Display the details

SELECT
CONCAT (c.contactFirstName, ' ', c.contactLastName) AS
'client contact', checkNumber, amount
FROM
customers c, payments p
WHERE
amount = (SELECT MAX (amount) FROM payments)

AND c.customerNumber = p.customerNumber;

Subqueries

e Same, but payments larger than the average amount

SELECT
CONCAT (c.contactFirstName, ' ', c.contactLastName) AS
'client contact', checkNumber, amount
FROM
customers c, payments p
WHERE
amount > (SELECT AVG (amount) FROM payments) AND
c.customerNumber = p.customerNumber;

client contact checkNumber amount
Jean King HQ55022 32641.98
Jean King ND748579 33347.88
Peter Ferguson GG31455 45864.03
Peter Ferguson MA765515 82261.22
Peter Ferguson NR27552 44894.74
Janine Labrune LN373447 4792419
Janine Labrune NG94694 49523.67
Jonas Bergulfsen DB889831 50218.95
Jonas Bergulfsen MA302151 34638.14
Susan Nelson AE215433 101244.59
Susan Nelson BG255406 85410.87
Susan Nelson ET64396 83598.04
Susan Nelson HI366474 47142.70
Susan Nelson HR86578 55639.66
Susan Nelson KI131716 111654.40
Susan Nelson LF217299 43369.30
Susan Nelson NT141748 45084.38
Roland Keitel FH668230 33820.62
Kwai Lee MA724562 50025.35
Kwai Lee NB445135 35321.97

Diego Freyre AU364101 36251.03
Diego Freyre DB583216 36140.38

 Find customers that did not order anything:

Subqueries

e Find the connection!

customers

* customerNumber
customerName
contactLastName
contactFirstName
phone
addressLine1
addressLine2
city
state
postalCode
country
salesRepEmployeeNumber
creditLimit

+

orders

—_—
e

* orderNumber
orderDate
requiredDate
shippedDate
status
comments
customerNumber

payments

* customerNumber

* checkNumber
paymentDate
amount

Subqueries

* The set of customers with orders is given by
customerNumber

SELECT
customerNumber
FROM
orders;

Subqueries

e \We want customer information where the customer
number is not in this set

SELECT *

FROM customersS

WHERE customerNumber NOT IN (SELECT
customerNumber

FROM
orders) ;

Subqueries

 And then project

SELECT customerName,
concat (contactFirstName, ' ', contactlLastName) AS contact,
city,
country
FROM customers
WHERE customerNumber NOT IN (SELECT
customerNumber
FROM
orders) ;

Subqueries

* How big are orders?

SELECT orderNumber, COUNT (orderNumber)

FROM orderdetails
GROUP RY orderNumber;

orderNumber items

10100
10101
10102
10103
» 10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116

4
4

2

16
13
15
18

AS 1tems

Subqueries

* Now find maximum, minimum, and average

SELECT
MAX (1tems),
MIN (1tems),
AVG (1tems)
FROM
(SELECT orderNumber, COUNT (orderNumber) AS 1tems
FROM orderdetails
GROUP BY orderNumber) AS tempTable;

Subqueries

* Notice that we need to give a name to the subtable

MAX(items) MIN(items) AVG(items)

18 1 9.1902

Examples

 Unions, intersections, excepts

* Jo execute the corresponding set operations

(SELECT name, address
FROM movieStars

WHERE gender = 'F'

)

INTERSECT

(SELECT name, address
FROM movieExecs

WHERE netWorth > 1000000

)

Subqueries

 Subqueries with conditions involving relations

 We obtain a relation R as a subquery

e E.g. with subquery (SELECT * FROM foobar)
e Queries are:

e EXISTS R

* sSINR sNOTINR

e s>ALLR NOT s>ALLR

e s>ANYR NOTs>ANYR

Subqueries

 Subqueries involving tuples
e Tuple is a list of scalar values

e Can compare tuples with the same number of
components

e Example:

* Finding the producers of 'Harrison Ford' movies

Subqueries

SELECT name
FROM movieExec
WHERE cert# IN
(SELECT producerC#
FROM movies
WHERE (title, year) IN
(SELECT movieTitle, movlieYear
FROM Starsin
WHERE starName = 'Harrison Ford'

)
) ;

Subqueries

 Jo analyze a query, start with the inmost query

SELECT name
FROM movieExec
WHERE cert# IN
(SELECT producerC#
FROM movies
WHERE (title, year) IN
(SELECT movieTitle, movieYear
FROM Starsin
WHERE starName = 'Harrison Ford'

)
) ;

Subqueries

* This query can also be written without nested subqueries

SELECT name

FROM movieExec, movies, starsln

WHERE cert# = producerC#
AND starsIn.title = movies.title
AND starsIn.year = movlie.year
AND starName = 'Harrison Ford'

Subqueries

e Correlated subqueries

e Subquery is evaluated many times

 Once for each value given

e Example

SELECT title
FROM movies 0Old
WHERE vear < ANY (
SELECT vyear
FROM movies
WHERE title = Old.title

) ;

Subqueries

e Scoping rules
e First look for the subquery and tables in that subquery

* Then go to the nesting subquery

e etc.

Subqueries

e Subqueries in FROM clauses

* Here we join on a subquery aliased Prod

SELECT name
FROM movieExecs, (SELECT producerC#
FROM movies, starsIn
WHERE movies.title = starsIn.title

AND movies.year = starslIn.year
AND starName = 'Harrison Ford'
) Prod

WHERE cert# = Prod.producerC#

Subqueries

e SQL JOIN expression
e EXxplicit construction of various joins
e CROSS JOIN (product)
e NATURAL JOIN
 FULL OUTER JOIN
e NATURAL FULL OUTER JOIN
e LEFT OUTER JOIN
e RIGHT OUTER JOIN

Subqueries

e Examples

movies FULL OUTER JOIN starsIn ON
movies.title = stars.

Subqueries

e Examples

movieStar (name, address, gender, birthday)

moviekExec (name, address, cert#, netWorth)

movieStar NATURAL JOIN movieExec (
name, address, gender, birthday, cert#, netWorth)

Eliminating Duplicates

e Use Distinct

SELECT DISTINCT name
FROM movies

e Warning: Invoking distinct is costly

Eliminating Duplicates

* Union, intersection, difference usually remove duplicates
automatically

* |f we do not want this, but bag semantics:

e Use the keyword all

(SELECT title, vear
FROM movies)
UNION ALL
(SELECT movieTitle AS title,
movieYear AS year
FROM
starsIn);

Aggregate Functions

e COUNT

e numeric and non-numeric data

* null values excepted

e SUM, MIN, MAX, AVG - only numeric data

e Exercise: Find the number of different stars in the starsin
table

SELECT COUNT (DISTINCT name)
FROM starsln

Aggregate Functions

e Find the combined net-worth of moviekExecs

SELECT SUM (networth)
FROM movieExecs

* Find the average net-worth of movieExecs

SELECT ROUND (AVG (networth), 2)
FROM movieExecs

Aggregate Functions

e Dealing if NULL values
e IFNULL(EXPR1, EXPR2):
e Gives EXPR1 if it is not NULL and EXPR2 if not

® SELECT
name,
IFNULL (studio, 'not president') AS studio
FROM movieExecs;

Aggregate Functions

e COALESCE(EXPR1, EXPR2, EXPRS, ... EXPRn)

e Gives first nonNULL expression

Grouping

 Aggregation happens usually with grouping
e To group, use GROUP BY followed by a WHERE clause

SELECT studioName, SUM(length) AS totalRunTime
FROM movies
GROUP BY studioName;

Grouping

e Example

e Computing the total run time of movies produced by a
producer

SELECT name, SUM(length) AS totalRunTime
FROM MovieEkExec, Movies

WHERE producerC# = cert#

GROUP BY name;

Grouping

e Aggregation and Nulls

* NULL does not contribute to a sum, average, or count

 Grouping and Nulls

e NULL is an ordinary value for grouping purposes

* Aggregation except COUNT over an empty bag gives
result NULL

Transactions

Transactions

e Databases have to process many operations in parallel

 This means some support for inter-process
communication

e Usually provided by logging
e DBMS differ in what they provide
e Serializability:

e All transactions appear to have been executed one
after the other

Transactions

* Atomicity
A single query is never interrupted:
e Example:

* A transfer of money from one account to another
IS executed completely or not at all

 Both accounts have changed or none

Transactions

e [ransaction

A group of SQL statements that are all processed in the
order given or not at all

e SQL:
e START TRANSACTION
e either
e COMMIT
e ROLLBACK

Transactions

* Read only transactions

By declaring a transaction as read-only, SQL can
usually perform it quicker

e SET TRANSACTION READ ONLY;
e SET TRANSACTION READ WRITE;

Transactions

* Dirty Reads:

* Reading a record from an update that will be rolled-back
* Are dirty reads bad?

e Depends

e Sometimes, it does not matter, and we do not want the
DBMS spend time on making sure that there are no
dirty reads

e Sometimes, a dirty read can absolutely mess up things

e Selling the same commodity to two customers, ...

Transactions

e SQL Isolation Levels:
e Allow dirty reads:
e SET TRANSACTION READ WRITE
e SET ISOLATION LEVEL READ UNCOMMITTED

Transactions

e SQL Isolation Levels:
* Allow reads only of committed data:
e SET TRANSACTION READ WRITE
e SET ISOLATION LEVEL READ COMMITTED

Transactions

e SQL Isolation Levels:

e Disallow dirty reads, but insure that the reads are
consistent:

e SET TRANSACTION READ WRITE
e SET ISOLATION LEVEL READ REPEATABLE READ

Transactions

e SQL Isolation Levels:
e Serializability (default):
e SET TRANSACTION READ WRITE

e SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE

