
No SQL Databases
Thomas Schwarz, SJ

Relational Model
Shortcomings

• Need: Greater Scalability

• High write throughput / very large datasets

• Independence from few vendors — Move towards Open
Source

• Need for different query operations

• Restrictiveness of relational schemas

Data at Very Large Scale
• Example: Hush — HBase URL Shortener

• Hand a URL to a Shortener service

• Get a shorter URL back

• E.g. to use in twitter messages

• Shortener provides usage counter for each shortened URLs

• "Vanity URL" that incorporate specific domain names

• Need to maintain users

• log in to create short URLs

• track existing URLs

• see reports for daily, weekly, or monthly usage

Data at Very Large Scale
• Data is too large to store at a single server

• But then:

• Limited need for transactions

• Importance of high throughput writes and reads

Data at Very Large Scale
• Columnar Layout

• A relational database strategy often adopted in No-SQL
databases

• Instead of storing data in tuples

• Store by attribute

Columnar Layout
• Given a SQL Table:

• We project to columns

• We select rows

Columnar Layout
• We can store it row-by-row

Columnar Layout
• Or we can use a columnar layout

Data at Very Large Scale
• For large HUSH:

• Can use a relational database

• Use normalization and obtain a scheme

Data at Very Large Scale
• To deal with very large data and with high operations

volume:

• Principles of Denormalization, Duplication, Intelligent Keys

• Denormalize by duplicating data in more than one table

• Avoids aggregation at read time

• Pre-materialize required views

Data at Very Large Scale
• Denormalization:

• We normalize to avoid write anomalies

• A given fact is represented in a single value

• A new fact or a changed fact affect a single tuple

• We use joins in order to recombine facts

Data at Very Large Scale
• Example:

• Orders has OrderNumber, Dates and Status

• Orderdetails has OrderNumber, Items, Quantities and
Prices

• If a status changes: only update one row in orders

Data at Very Large Scale
• Example continued

• Price of normalization is joins for a query like:

• “What is the sales volume by a given sales person?”

• Denormalization:

• Join orders and orderdetails on orderNumber

• Creates a write anomaly: If an order is shipped, need to
update several rows

• But avoids the join

• You can do this as a materialized view

Data at Very Large Scale
• Denormalize, Duplication, Intelligent Keys (DDI) principles

• Aggregate related tables into a big table

• Prefer “tall-narrow” over “flat-wide”

• I.e. many rows, few columns over many columns,
few rows

• Select the most suitable key: row key (the intelligent
key)

• Candidates can be measured by the amount of times
a primary key becomes a foreign key

Data at Very Large Scale
• DDI:

• Once a tall-lean table structure is used

• Can define automatic sharding

• Horizontal fragmentation by row-key

Data at Very Large Scale
• Example: HBase URL Shortener (Hush)

• user(id, username, credentials, rules, first_name,
last_name, email) with unique username constraint

• url(id, url, refShortID, title, description, content)

• shorturl(id, userID, urlID, shortID, refShortID,
description) with unique shortID and F.K. userID and
urlID

• click(id, datestamp, shortID, category, dimension,
counter) with F.K. shortID

Data at Very Large Scale

Data at Very Large Scale
• Purpose: maps long URLs to short URLs

USER

id

username
credentials
roles
first_name
last_name
email

PK

IDX

SHORTURL

id

userID
urlID
shortID
refShortID

PK

FK1
FK2
IDX

URL

id

url
refShortID
title
description
content

PK

CLICK

id

datestamp
shortID
category
dimension
counter

PK

FK1

Data at Very Large Scale
• Short URL can be given to others

• This is translated to the full URL

USER

id

username
credentials
roles
first_name
last_name
email

PK

IDX

SHORTURL

id

userID
urlID
shortID
refShortID

PK

FK1
FK2
IDX

URL

id

url
refShortID
title
description
content

PK

CLICK

id

datestamp
shortID
category
dimension
counter

PK

FK1

Data at Very Large Scale
• Each click is tracked, which aggregates to weekly usage

numbers

USER

id

username
credentials
roles
first_name
last_name
email

PK

IDX

SHORTURL

id

userID
urlID
shortID
refShortID

PK

FK1
FK2
IDX

URL

id

url
refShortID
title
description
content

PK

CLICK

id

datestamp
shortID
category
dimension
counter

PK

FK1

Data at Very Large Scale
• All these operations require joins

USER

id

username
credentials
roles
first_name
last_name
email

PK

IDX

SHORTURL

id

userID
urlID
shortID
refShortID

PK

FK1
FK2
IDX

URL

id

url
refShortID
title
description
content

PK

CLICK

id

datestamp
shortID
category
dimension
counter

PK

FK1

Data at Very Large Scale
• Bandwidth problem

• Especially for joins

• Need to store data in joins together, not look them up
separately

• But can relax on the consistency model:

• No need to serialize short URL creation or URL
translations or have atomic updates

• Might be able to relax integrity constraints

• Statistics need to be approximately correct

Data at Very Large Scale
• Denormalization:

• Key idea: Store data together that is likely to be joined

• Means:

• massive duplication of data

• relaxed consistency needed

• but faster reads / writes

Fundamental Ideas
• Wide column stores

• names and format of columns can vary from row to row

• Each row is a key-value pair

• First implemented with Google's BigTable

• Implemented by Cassandra, HBase, MS Azure Cosmos
DB, …

Row 1
Column 1

Value 1

Column 2

Value 2

Column 3

Value 3

Column 4

Value 4
…

Row 2
Column 1

Value 1

Column 2

Value 2

Column 3

Value 3

Column 4

Value 4
…

Row 3
Column 1

Value 1

Column 2

Value 2

Column 3

Value 3

Column 4

Value 4
…

Row 4
Column 1

Value 1

Column 2

Value 2

Column 3

Value 3

Column 4

Value 4
…

…

Fundamental Ideas
• Document databases

• Uses a format like JSON document

• MongoDB, XML databases

Fundamental Ideas
• Key-value database

• Every record is a key-value pair

• A large set of tools predating no-sql databases in
general

Fundamental Ideas
• Graph databases

• Navigational database successor:

• information about data interconnectivity or topology
as important as data itself

• See below for an example

NoSQL Consistency
• Consistency Levels for NoSQL databases

• Strict: changes to data are atomic and (appear to) take
effect immediately

• Sequential: every client sees all changes in the same
order in which they are applied

• Causal: all changes that are casually related are
observed in the same order by all clients

• Eventual: When no updates occur for a while, then all
pending updates will occur and all replicas are consistent

• Weak: No guarantee is made

CAP Theorem
• A distributed system can only achieve two out of the three

goals of

• Consistency

• Availability

• Partition Tolerance
A. Fox and E. A. Brewer, "Harvest Yield and Scalable Tolerant Systems",
Proc. 7th Workshop Hot Topics in Operating Systems (HotOS 99) IEEE CS,
pp. 174-178, 1999.

Brewer, Eric. "CAP twelve years later: How the" rules" have changed."
Computer 45.2 (2012): 23-29.

Example: HURL
• HBase:

Alternatives to Relational
Schemes: XML

• Data is often structured hierarchically
Invoice = {
 date : "2008-05-24"
 invoiceNumber : 421

 InvoiceItems : {
 Item : {
 description : "Wool Paddock Shet Ret Double Bound Yellow 4'0"
 quantity : 1
 unitPrice : 105.00
 }
 Item : {
 description : "Wool Race Roller and Breastplate Red Double"
 quantity : 1
 unitPrice : 75.00
 }
 Item : {
 description : "Paddock Jacket Red Size Medium Inc Embroidery"
 quantity : 2
 unitPrice : 67.50
 }
 }
}

Alternatives to Relational
Schemes: XML

• As an XML document
<invoice>

 <number>421</number>
 <date>2008-05-24</date>
 <items>
 <item>
 <description>Wool Paddock Shet Ret Double Bound Yellow 4'0"</description>
 <quantity>1</quantity>
 <unitPrice>105.00</unitPrice>
 </item>
 <item>
 <description>Wool Race Roller and Breastplate Red Double</description>
 <quantity>1</quantity>
 <unitPrice>75.00</unitPrice>
 </item>
 <item>
 <description>Paddock Jacket Red Size Medium Inc Embroidery</description>
 <quantity>2</quantity>
 <unitPrice>67.50</unitPrice>
 </item>
 </items>
</invoice>

Alternatives to Relational
Schemes: XML

• Advantage of XML

• Faster to scan all data

• No joins

• Disadvantages of XML

• Each record contains the full or an abbreviated scheme

• Each query needs to select from big chunks of data

Alternatives to Relational
Schemes: JSON

• JSON — JavaScript Object Notation

• Human-readable

• Organized as key-value pairs

Alternatives to Relational
Schemes: JSON

• JSON record example
{
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 27,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 },
 {
 "type": "mobile",
 "number": "123 456-7890"
 }
],
 "children": [],
 "spouse": null
}

Alternatives to Relational
Schemes: JSON

• JSON can use a schema (type definition)

• JSON was first used for data transmission as a data
serialization format

Alternatives to Relational
Schemes: JSON

• Many-to-One and Many-to-Many Relationships

• Modeled by the same value for the same key

• Problem: Need to standardize / internationalize
these values

• Using id-s instead of plain text to avoid problems

• Table of id-s reintroduce a relational scheme through
a backdoor

Alternatives to Relational
Schemes: JSON

• Resumé

• Users present people

• People have jobs, education, and recommenders

• But they share jobs, companies, degrees, schools,
recommenders

• Should they stay text strings or become entities?

• Latter allows to add information to all resumés

• If recommenders get a photo, then all resumés should be
updated with this photo, so better to make recommenders
entities

Alternatives to Relational
Schemes: JSON

positions

user 1 education

recommendation

job 1

job 2

job_title

job_title

rec 1

organization 1

organization 2

organization 3

start
end

start
end

school 1

school 2

school 3

positions

job 1

job 2

job_title

job_title

user 2education

school 3

start
end

start
end

start
end

• Data has a tendency to become less-join free

Document Databases
• Records are documents

• Encode in

• XML

• YAML

• JSON

• BSON (Mongo DB)

• CRUD operations: create, read, update, delete

Document Databases
• Enforcing schema

• Most document databases do not enforce schema

• —> “Schemaless”

• In reality: “Schema on Read”

• RDBMS would then use “Schema on Write”

• Allows schema updates in simple form

Document Databases
• Schema on Read:

• Advantages:

• Data might come from external sources

• Disadvantages:

• No data checking

Document Databases
• Document database support

• Most commercial database systems now support XML
databases

Map Reduce
Data at Scale

History
• A simple paradigm that popped up several times as paradigm

• Observed by google as a software pattern:

• Data gets filtered locally and filtered data is then
reassembled elsewhere

• Software pattern: Many engineers are re-engineering the
same steps

• Map-reduce:

• Engineer the common steps efficiently

• Individual problems only need to be engineered for what
makes them different

History
• Open source project (in part sponsored by Yahoo!)

• Java-based Hadoop

• Eventually a first tier Apache Foundation project

• Other projects at higher level: Pig, Hive, HBase, Mahout,
Zookeeper

• Use Hadoop as foundation

• Hadoop is becoming a distributed OS

Map Reduce Paradigm
• Input: Large amount of data spread over many different

nodes

• Output: A single file of results

• Two important phases:

• Mapper: Records are processed into key-value pairs.
Mapper sends key-value pairs to reducers

• Reducer: Create final answer from mapper

Simple Example
• Hadoop Word Count

• Given different documents on many different sites

• Mapper:

• Extract words from record

• Combines words and generates key-value pairs of type word:
key

• Sends to the reducers based on hash of key

• Reducer:

• Receives key-value pairs

• Adds values for each key

• Sends accumulated results to aggregator - client

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

Mapper

Mapper

Mapper

Mapperdocument

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

Reducer

Reducer

Reducer

Reducer

Reducer

Reducer
ant: 2

ant: 3

ant: 1 ant: 4

Client

ani: 1
ant: 10
ape: 39
asp: 2
ass: 5
auk: 2

rat: 5
rat: 3

rat: 1

ram: 12
rat: 9
ray: 5
roe: 2

HFS

Map-reduce paradigm in
detail

• The simple mapper -reducer paradigm can be expanded
into several, typical components

Map Reduce in Detail
• Mapper:

• Record Reader

• Parses the data into records

• Example: Stackoverflow comments.

• <row Id="5" PostId="5" Score="2" Text="Programming in

Portland, cooking in Chippewa ; it makes sense that these
would be unlocalized. But does bicycling.se need to follow
only that path? I agree that route a to b in city x is not
a good use of this site; but general resources would be."
CreationDate="2010-08-25T21:21:03.233" UserId="21" />

• Record reader extract the “Text=” string

• Passes record into a key-value format to rest of mapper

Map Reduce in Detail
• Mapper

• map

• Produces “intermediate” key-value pairs from the record

• Example:

• "Programming in Portland, cooking in Chippewa ; it

makes sense that these would be unlocalized. But does
bicycling.se need to follow only that path? I agree
that route a to b in city x is not a good use of this
site; but general resources would be.”

• Map produces: <programming: 1> <in: 1>
<Portland: 1> <cooking: 1> <in: 1> …

Map Reduce in Detail
• Mapper

• Combiner — a local reducer

• Takes key-value pairs and processes them

• Example:

• Map produces: <programming: 1> <in: 1>
<Portland: 1> <cooking: 1> <in: 1> …

• Combiner combines words: <programming: 1>
<in: 4> <Portland: 3> …

Map Reduce in Detail
• Combiners allow us to reduce network traffic

• By compacting the same infomrmation

Map Reduce in Detail
• Mapper

• Partitioner

• Partitioner creates shards of the key-value pairs
produced

• One for each reducer

• Often uses a hash function or a range

• Example:

• md5(key) mod (#reducers)

Map Reduce in Detail
• Reducer

• Shuffle and Sort

• Part of the map-reduce framework

• Incoming key-value pairs are sorted by key into one
large data list

• Groups keys together for easy agglomeration

• Programmer can specify the comparator, but nothing
else

Map Reduce in Detail
• Reducer

• reduce

• Written by programmer

• Works on each key group

• Data can be combined, filtered, aggregated

• Output is prepared

Map Reduce in Detail
• Reducer

• Output format

• Formats final key-value pair

Map Reduce Patterns
• Summarizations

• Input: A large data set that can be grouped according
to various criteria

• Output: A numerical summary

• Example:

• Calculate minimum, maximum, total of certain fields
in documents in xml format ordered by user-id

Summarization
• Example:

• Given a database in xml-document format

• Determine the earliest, latest, and number of posts for
each user

<row Id="193" PostTypeId="1" AcceptedAnswerId="194"
CreationDate="2010-10-23T20:08:39.740" Score="3" ViewCount="30"
Body="<p>Do you lose one point of reputation when you
down vote community wiki? Meta? </p>

<p>I
know that you do for "regular questions". </
p>
" OwnerUserId="134"
LastActivityDate="2010-10-24T05:41:48.760" Title="Do you lose
one point of reputation when you down vote community wiki?
Meta?" Tags="<discussion>" AnswerCount="1"
CommentCount="0" />

Summarization
• Mapper:

• Step 1: Preprocess document by extracting the user ID
and the date of the post

• Step 2: map:

• User ID becomes the key.

• Value stores the date twice in Java-date format and
adds a long value of 1

“134”: (2010-10-23T20:08:39.740, 2010-10-23T20:08:39.740, 1)

Summarization
• Mapper:

• Step 3: Combiner

• Take intermediate User-ID — value pairs

• Combine the value pairs

• Combination of two values:

• first item is minimum of the dates

• second item is maximum of the dates

• third item is sum of third items

Summarization
• The map reduce framework is given the number of

reducers

• Autonomously maps combiner results to reducers

• Each reducer gets key-value parts for a range of user-
IDs grouped by user-ID

Summarization
• Reducer:

• Passes through each group combining key-value pairs

• End-result:

• Key-value pair with key = user-id

• Value is a triple with

• minimum posting date

• maximum posting date

• number of posts

Summarization
• Reducer:

• Each summary key— value pair is sent to client

Summarization
• Example (cont.)

UserID 12345 01.02.2010 01.02.2010 1

UserID 12345 02.02.2010 02.02.2010 1

UserID 12345 04.02.2010 04.02.2010 1

UserID 98765 12.02.2010 12.02.2010 1

UserID 98765 02.02.2010 02.02.2010 1

UserID 98765 05.02.2010 05.02.2010 1

UserID 56565 02.02.2010 02.02.2010 1

UserID 56565 03.02.2010 03.02.2010 1

UserID 12345 02.02.2010 02.02.2010 1

UserID 12345 04.02.2010 04.02.2010 1

UserID 77444 12.02.2010 12.02.2010 1

UserID 77444 02.02.2010 02.02.2010 1

UserID 98765 05.02.2010 05.02.2010 1

Mapper 1

Mapper 2

 Combiner

 Combiner

UserID 12345 01.02.2010 04.02.2010 3

UserID 98765 02.02.2010 12.02.2010 3

UserID 56565 02.02.2010 03.02.2010 2

UserID 12345 02.02.2010 04.02.2010 2

UserID 77444 02.02.2010 12.02.2010 2

UserID 98765 05.02.2010 05.02.2010 1

Summarization
• Example (cont.) Automatic Shuffle and Sort

• Records with the same key are sent to the same
reducer

Reducer 1

Reducer 2

Reducer 3

Mapper 1

Mapper 2

Mapper 3

Mapper 4

Mapper 123

UserID
12345

01.02.
2010

04.02.
2010 3

UserID
12345

02.02.
2010

04.02.
2010 2

Summarization
• Example (cont.)

• Reducer receives records already ordered by user-ID

• Combines records with same key

UserID 12345 01.02.2010 04.02.2010 3

UserID 12345 02.02.2010 04.02.2010 2

UserID 12345 26.03.2010 30.04.2010 5

UserID 12345 19.01.2010 01.04.2010 3

UserID 16542 02.02.2010 04.02.2010 6

UserID 16542 26.03.2010 29.05.2010 5

UserID 16542 19.01.2010 19.01.2010 1

UserID 12345 01.02.2010 30.02.2010 13

UserID 16542 19.01.2010 29.05.2010 12

Summarization
• In (pseudo-)pig:

• Load data

posts = LOAD ‘/stackexchange/posts.tsv.gz'

USING PigStorage('\t') AS (

post_id : long,

user_id : int,

text : chararray,

…

post : date

)

Summarization
• In (pseudo-)pig:

• Group by user-id

• Obtain min, max, count:

post_group = GROUP posts BY user_id;

result = FOREACH post_group GENERATE group,

MIN(posts.date), MAX(posts.date),

COUNT_STAR(post_group)

Summarization
• In (pseudo-)pig:

• Load data

orders = LOAD ‘/stackexchange/posts.tsv.gz'

USING PigStorage('\t') AS (

post_id : long,

user_id : int,

text : chararray,

…

post : date

)

Summarization
• Your turn:

• Calculate the average score per user

• The score is kept in the “score”-field

Summarization
• Solution:

• Need to aggregate sum of score and number of posts

• Mapper: for each user-id, create a record with score

• Combiner adds scores and counts

• Reducer combines as well

• Generates output key-value pair and sends it to the user

•

userid: score, 1

userid: sum_score, count

userid: sum_score/count

Summarization
• Finding the median of a numerical variable

• Mapper aggregates all values in a list

• Reducer aggregates all values in a list

• Reducer then determines median of the list

• Can easily run into memory problems

Summarization
• Median calculation:

• Can compress lists by using counts

• becomes

• Combiner creates compressed lists

• Reducer code directly calculates median

• An instance where combiner and reducer use
different code

2, 3, 3, 3, 2, 4, 5, 2, 1, 2

(1,1), (2,4), (3,3), (4,1) (5,1)

Summarization
• Standard Deviation

• Square-root of variance

• Variance — Average square deviation from average

•

• Leads to a two pass solution, calculate average first

σ =
1
N

N

∑
i=1

(xi − x̄)2

Summarization
• Standard Deviation

• Numerically dangerous one-path solution

• σ2
x =

1
N

N

∑
i=1

(xi − x̄)2

=
1
N

N

∑
i=1

(x2
i − 2x̄xi + x̄2)

=
1
N

N

∑
i=1

x2
i − 2x̄

1
N

N

∑
i=1

xi + x̄2

=
1
N

N

∑
i=1

x2
i − 2x̄2 + x̄2 =

1
N

N

∑
i=1

x2
i + x̄2

Summarization
• Chan’s adaptation of Welford’s online algorithm

• Using the counts of elements, can calculate the
variance in parallel from any number of partitions

• Unfortunately, can still be numerically instable

def parallel_variance(avg_a, count_a, var_a, avg_b, count_b, var_b):
 delta = avg_b - avg_a
 m_a = var_a * (count_a - 1)
 m_b = var_b * (count_b - 1)
 M2 = m_a + m_b + delta ** 2 * count_a * count_b / (count_a + count_b)
 return M2 / (count_a + count_b - 1)

Summarization
• Standard Deviation:

• Schubert & Gertz: Numerically Stable Parallel
Computation of (Co)-Variance

• SSDBM '18 Proceedings of the 30th International
Conference on Scientific and Statistical Database
Management

Summarization
• Inverted Index

• Analyze each comment in StackOverflow to find
hyperlinks to Wikipedia

• Create an index of wikipedia pages pointing to
StackOverflow comments that link to them

Summarization
• Inverted Index is a group-by problem solved almost

entirely in the map-reduce framework

Summarization /

Inverted Index

• Mapper

• Parser:

• Processes posts

• Checks for right type of post, extracts a list of wikipedia urls
(or Null if there are none)

• Outputs key-value pairs :

• Keys: wikipedia url

• Value: row-ID of post

• Optional combiner:

• Aggregates values for a wikipedia url in a single list

Summarization /

Inverted Index

• Reducer

• Aggregates values belonging to the same key in a list

Summarization /

Inverted Index

• Generic Inverted Index diagram

mapper

Reducer

mapper

mapper

mapper
mapper

mapper

mapper

mapper

Reducer

Reducer

keyword: id
keyword: id

keyword: id
keyword: id
keyword: id
keyword: id

keyword: id

keyword: id
keyword: id

keyword: id

keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id

keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id

keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id

client

HBase
• Based on BigTable (Google 2006)

• Uses ideas of Map-reduce and Google File System
(replication)

HBase
• Basic unit is a column (value)

• Each column can have different versions, each stored
in a separate cell

• Columns form rows (with row identifier)

• Groups of columns are formed in families

• Columns accessed by family : qualifier pairs

• Rows are sorted lexicographically by row key

HBase

HBase
• Conceptually:

• HBase table looks like a relational database table

• But access is organized via tags:

HBase
• API allows you to filter data based on conditions on the

time

HBase
• Canonical example is the WebTable:

• Pages obtained crawling the internet

• Row key is the URL (in reverse order)

• Contents family: HTTP

• Anchor family: out-going urls

• Time dimension allows to find pages that are updated
frequently

HBase
• Actual storage is in regions

• A region is a contiguous collection of rows and
columns

• If a region becomes to big: Split it around a middle row
key

• Typical region size is a few GBs

• Each server should have between 100 and 10,000 regions

HBase
• API:

• Allows creation / deletion of tables

• Allows CRUD access

• Scan API

• Supports single-row transactions, but not cross-row
transactions

• Map-reduce framework allows to use tables as input
sources

HBase
• Storage implementation:

• Data is stored in HFiles

• HFiles have a block index:

• Can find a row in an HFile with a single disk seek

• HFiles are immutable

• Files are stored in the Hadoop Distributed File System
(HDFS)

HBase
• To delete a value:

• Need to use a delete marker with the key (tombstone
marker)

• Periodically: Go through HFiles are rewrite them,
leaving out deleted rows

Query Languages
• Documents lend themselves to object-oriented querying

• Imperative code

• SQL is declarative:

• Programmer explains a solution

• System figures out the best way to find the solution

• Use declarative query languages for document databases

Query Languages
• Map-Reduce (neither declarative nor imperative):

• Consists of only two pieces of code

• Mapping: Selecting from Documents

• Reducing: Take selection elements and operate on
them

Alternatives to Relational
Schemes: Graph Models

• Graphs consists of vertices and edges

• Example:

• Social graphs: vertices are people and edges are
relationships such “knows”

• Web graph: vertices are pages and edges are links

• Road networks: vertices are places and edges are
connections

Alternatives to Relational
Schemes: Graph Models

• Relational Database hides semantic relationships

Alternatives to Relational
Schemes: Graph Models

• Document model hides semantic relationships

Alternatives to Relational
Schemes: Graph Models

• Some property values are really
references to foreign aggregates

• Aggregate’s identifier is a foreign
key

• Relationships between them are
not explicitly accessible

• Joining aggregates becomes
expensive

Alternatives to Relational
Schemes: Graph Models

• Relational Database

• Some queries are simple:

SELECT p1.Person 
FROM Person p1 JOIN PersonFriend

ON PersonFriend.FriendID = p1.ID JOIN Person p2

ON PersonFriend.PersonID = p2.ID WHERE p2.Person = 'Bob'

Alternatives to Relational
Schemes: Graph Models

• Relational Database

• Some queries are more involved: Friends of Bob

SELECT p1.Person 
FROM Person p1 JOIN PersonFriend

 ON PersonFriend.PersonID = p1.ID JOIN Person p2

 ON PersonFriend.FriendID = p2.ID

WHERE p2.Person = 'Bob'

Alternatives to Relational
Schemes: Graph Models

• Relational Database

• Some queries others are difficult: Alice’s friends of friends

SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND FROM
PersonFriend pf1 JOIN Person p1

ON pf1.PersonID = p1.ID JOIN PersonFriend pf2

ON pf2.PersonID = pf1.FriendID JOIN Person p2

ON pf2.FriendID = p2.ID 
WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID

Alternatives to Relational
Schemes: Graph Models

• Property graph model by Neon

• Each vertex consists of

• A unique identifier

• A set of outgoing edges

• A set of incoming edges

• A collection of properties — key-value pairs

• Each edge consists of

• A unique identifier

• The tail vertex

• The head vertex

• A label to describe the relationship

• A collection of properties — key-value pairs

Alternatives to Relational
Schemes: Graph Models

Alternatives to Relational
Schemes: Graph Models

• Order history as a property graph

Alternatives to Relational
Schemes: Graph Models

• Processing queries in Neo4j

• Use Cypher (from “The matrix”)

• Can describe a path

 (emil)<-[:KNOWS]-(jim)-[:KNOWS]->(ian)-[:KNOWS]->(emil)

Alternatives to Relational
Schemes: Graph Models

(emil:Person {name:'Emil'})

 <-[:KNOWS]-(jim:Person {name:'Jim'})

 -[:KNOWS]->(ian:Person {name:'Ian'})

 -[:KNOWS]->(emil)

Alternatives to Relational
Schemes: Graph Models

• Finding the mutual friends of Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-
[:KNOWS]->(c)

RETURN b, c

Alternatives to Relational
Schemes: Graph Models

• Triple Stores

• Information is stored as (subject, predicate, object)

• Subjects correspond to vertices

• Objects are

• A value in a primitive data type — (jim : age : 64)

• Another vertex — (jim : friend_of : thomas)

Alternatives to Relational
Schemes: Graph Models

@prefix : </example>

_:lucy a :Person

_:lucy :name “Lucy”

_:lucy :born_in _:idaho

_:idaho a :Location

_:idaho :name “Idaho”

_:idaho :type “State”

_:idaho :within _:usa

Alternatives to Relational
Schemes: Graph Models

• Triple stores are the language of the semantic web

• Semantic web:

• Machine readable description of type of links

• e.g. image, text, …

• Creates web of data — a database of everything

• Stored in Resource Description Framework (RDF)

• SPARQL — query language for triple stores

