
No SQL Databases
Thomas Schwarz, SJ



Relational Model 
Shortcomings

• Need: Greater Scalability


• High write throughput / very large datasets


• Independence from few vendors — Move towards Open 
Source


• Need for different query operations 


• Restrictiveness of relational schemas



Data at Very Large Scale
• Example:  Hush — HBase URL Shortener


• Hand a URL to a Shortener service


• Get a shorter URL back


• E.g. to use in twitter messages


• Shortener provides usage counter for each shortened URLs


• "Vanity URL" that incorporate specific domain names


• Need to maintain users


• log in to create short URLs


• track existing URLs


• see reports for daily, weekly, or monthly usage



Data at Very Large Scale
• Data is too large to store at a single server


• But then: 


• Limited need for transactions


• Importance of high throughput writes and reads



Data at Very Large Scale
• Columnar Layout


• A relational database strategy often adopted in No-SQL 
databases


• Instead of storing data in tuples


• Store by attribute



Columnar Layout
• Given a SQL Table:


• We project to columns


• We select rows



Columnar Layout
• We can store it row-by-row



Columnar Layout
• Or we can use a columnar layout



Data at Very Large Scale
• For large HUSH:


• Can use a relational database


• Use normalization and obtain a scheme



Data at Very Large Scale
• To deal with very large data and with high operations 

volume:


• Principles of Denormalization, Duplication, Intelligent Keys 


• Denormalize by duplicating data in more than one table


• Avoids aggregation at read time


• Pre-materialize required views



Data at Very Large Scale
• Denormalization:


• We normalize to avoid write anomalies


• A given fact is represented in a single value


• A new fact or a changed fact affect a single tuple


• We use joins in order to recombine facts



Data at Very Large Scale
• Example:


• Orders has OrderNumber, Dates and Status


• Orderdetails has OrderNumber, Items, Quantities and 
Prices


• If a status changes: only update one row in orders



Data at Very Large Scale
• Example continued


• Price of normalization is joins for a query like:


• “What is the sales volume by a given sales person?”


• Denormalization:


• Join orders and orderdetails on orderNumber


• Creates a write anomaly: If an order is shipped, need to 
update several rows


• But avoids the join


• You can do this as a materialized view



Data at Very Large Scale
• Denormalize, Duplication, Intelligent Keys (DDI) principles


• Aggregate related tables into a big table


• Prefer “tall-narrow” over “flat-wide”


• I.e. many rows, few columns over many columns, 
few rows


• Select the most suitable key: row key (the intelligent 
key) 

• Candidates can be measured by the amount of times 
a primary key becomes a foreign key



Data at Very Large Scale
• DDI:


• Once a tall-lean table structure is used


• Can define automatic sharding 

• Horizontal fragmentation by row-key



Data at Very Large Scale
• Example: HBase URL Shortener (Hush)


• user(id, username, credentials, rules, first_name, 
last_name, email) with unique username constraint


• url(id, url, refShortID, title, description, content)


• shorturl(id, userID, urlID, shortID, refShortID, 
description) with unique shortID and F.K. userID and 
urlID


• click(id, datestamp, shortID, category, dimension, 
counter) with F.K. shortID



Data at Very Large Scale



Data at Very Large Scale
• Purpose: maps long URLs to short URLs
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Data at Very Large Scale
• Short URL can be given to others


• This is translated to the full URL
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Data at Very Large Scale
• Each click is tracked, which aggregates to weekly usage 

numbers
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Data at Very Large Scale
• All these operations require joins
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Data at Very Large Scale
• Bandwidth problem


• Especially for joins


• Need to store data in joins together, not look them up 
separately


• But can relax on the consistency model:


• No need to serialize short URL creation or URL 
translations or have atomic updates


• Might be able to relax integrity constraints


• Statistics need to be approximately correct



Data at Very Large Scale
• Denormalization:


• Key idea: Store data together that is likely to be joined


• Means: 


• massive duplication of data


• relaxed consistency needed


• but faster reads / writes



Fundamental Ideas
• Wide column stores


• names and format of columns can vary from row to row


• Each row is a key-value pair


• First implemented with Google's BigTable


• Implemented by Cassandra, HBase, MS Azure Cosmos 
DB, …
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Fundamental Ideas
• Document databases 


• Uses a format like JSON document


• MongoDB, XML databases



Fundamental Ideas
• Key-value database


• Every record is a key-value pair


• A large set of tools predating no-sql databases in 
general



Fundamental Ideas
• Graph databases


• Navigational database successor:


• information about data interconnectivity or topology 
as important as data itself


• See below for an example



NoSQL Consistency 
• Consistency Levels for NoSQL databases


• Strict: changes to data are atomic and (appear to) take 
effect immediately


• Sequential: every client sees all changes in the same 
order in which they are applied


• Causal: all changes that are casually related are 
observed in the same order by all clients


• Eventual: When no updates occur for a while, then all 
pending updates will occur and all replicas are consistent


• Weak: No guarantee is made



CAP Theorem 
• A distributed system can only achieve two out of the three 

goals of


• Consistency


• Availability


• Partition Tolerance
A. Fox and E. A. Brewer, "Harvest Yield and Scalable Tolerant Systems", 
Proc. 7th Workshop Hot Topics in Operating Systems (HotOS 99) IEEE CS, 
pp. 174-178, 1999. 


Brewer, Eric. "CAP twelve years later: How the" rules" have changed." 
Computer 45.2 (2012): 23-29.



Example: HURL 
• HBase: 



Alternatives to Relational 
Schemes: XML

• Data is often structured hierarchically
Invoice = {
  date : "2008-05-24"
  invoiceNumber : 421

  InvoiceItems : {
    Item : {
      description : "Wool Paddock Shet Ret Double Bound Yellow 4'0"
      quantity : 1
      unitPrice : 105.00
    }
    Item : {
      description : "Wool Race Roller and Breastplate Red Double"
      quantity : 1
      unitPrice : 75.00
    }
    Item : {
      description : "Paddock Jacket Red Size Medium Inc Embroidery"
      quantity : 2
      unitPrice : 67.50
    }
  }
}



Alternatives to Relational 
Schemes: XML

• As an XML document
<invoice>

 <number>421</number>
 <date>2008-05-24</date>
 <items>
  <item>
   <description>Wool Paddock Shet Ret Double Bound Yellow 4'0"</description>
   <quantity>1</quantity>
   <unitPrice>105.00</unitPrice>
  </item>
  <item>
   <description>Wool Race Roller and Breastplate Red Double</description>
   <quantity>1</quantity>
   <unitPrice>75.00</unitPrice>
  </item>
  <item>
   <description>Paddock Jacket Red Size Medium Inc Embroidery</description>
   <quantity>2</quantity>
   <unitPrice>67.50</unitPrice>
  </item>
 </items>
</invoice>



Alternatives to Relational 
Schemes: XML

• Advantage of XML


• Faster to scan all data


• No joins


• Disadvantages of XML


• Each record contains the full or an abbreviated scheme


• Each query needs to select from big chunks of data 



Alternatives to Relational 
Schemes: JSON

• JSON — JavaScript Object Notation


• Human-readable


• Organized as key-value pairs



Alternatives to Relational 
Schemes: JSON

• JSON record example
{
  "firstName": "John",
  "lastName": "Smith",
  "isAlive": true,
  "age": 27,
  "address": {
    "streetAddress": "21 2nd Street",
    "city": "New York",
    "state": "NY",
    "postalCode": "10021-3100"
  },
  "phoneNumbers": [
    {
      "type": "home",
      "number": "212 555-1234"
    },
    {
      "type": "office",
      "number": "646 555-4567"
    },
    {
      "type": "mobile",
      "number": "123 456-7890"
    }
  ],
  "children": [],
  "spouse": null
}



Alternatives to Relational 
Schemes: JSON

• JSON can use a schema (type definition)


• JSON was first used for data transmission as a data 
serialization format 



Alternatives to Relational 
Schemes: JSON

• Many-to-One and Many-to-Many Relationships


• Modeled by the same value for the same key


• Problem:  Need to standardize / internationalize 
these values


• Using id-s instead of plain text to avoid problems


• Table of id-s reintroduce a relational scheme through 
a backdoor



Alternatives to Relational 
Schemes: JSON

• Resumé


• Users present people


• People have jobs, education, and recommenders


• But they share jobs, companies, degrees, schools, 
recommenders


• Should they stay text strings or become entities?


• Latter allows to add information to all resumés


• If recommenders get a photo, then all resumés should be 
updated with this photo, so better to make recommenders 
entities



Alternatives to Relational 
Schemes: JSON
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• Data has a tendency to become less-join free



Document Databases
• Records are documents


• Encode in 


• XML


• YAML


• JSON


• BSON (Mongo DB)


• CRUD operations: create, read, update, delete



Document Databases
• Enforcing schema


• Most document databases do not enforce schema


• —> “Schemaless”


• In reality: “Schema on Read”


• RDBMS would then use “Schema on Write”


• Allows schema updates in simple form



Document Databases
• Schema on Read:


• Advantages: 


• Data might come from external sources


• Disadvantages:


• No data checking



Document Databases
• Document database support


• Most commercial database systems now support XML 
databases



Map Reduce
Data at Scale



History
• A simple paradigm that popped up several times as paradigm


• Observed by google as a software pattern:


• Data gets filtered locally and filtered data is then 
reassembled elsewhere


• Software pattern:  Many engineers are re-engineering the 
same steps


• Map-reduce:  


• Engineer the common steps efficiently


• Individual problems only need to be engineered for what 
makes them different



History
• Open source project (in part sponsored by Yahoo!)


• Java-based Hadoop


• Eventually a first tier Apache Foundation project


• Other projects at higher level:  Pig, Hive, HBase, Mahout, 
Zookeeper


• Use Hadoop as foundation


• Hadoop is becoming a distributed OS



Map Reduce Paradigm
• Input:  Large amount of data spread over many different 

nodes


• Output:  A single file of results


• Two important phases:


• Mapper:  Records are processed into key-value pairs. 
Mapper sends key-value pairs to reducers


• Reducer:  Create final answer from mapper



Simple Example
• Hadoop Word Count


• Given different documents on many different sites


• Mapper:


• Extract words from record


• Combines words and generates key-value pairs of type word: 
key


• Sends to the reducers based on hash of key


• Reducer:


• Receives key-value pairs 


• Adds values for each key


• Sends accumulated results to aggregator - client
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Map-reduce paradigm in 
detail

• The simple mapper -reducer paradigm can be expanded 
into several, typical components



Map Reduce in Detail
• Mapper:


• Record Reader


• Parses the data into records


• Example:  Stackoverflow comments.  

• <row Id="5" PostId="5" Score="2" Text="Programming in 

Portland, cooking in Chippewa ; it makes sense that these 
would be unlocalized. But does bicycling.se need to follow 
only that path? I agree that route a to b in city x is not 
a good use of this site; but general resources would be." 
CreationDate="2010-08-25T21:21:03.233" UserId="21" />


• Record reader extract the “Text=” string


• Passes record into a key-value format to rest of mapper 



Map Reduce in Detail
• Mapper 

• map


• Produces “intermediate” key-value pairs from the record


• Example:

• "Programming in Portland, cooking in Chippewa ; it 

makes sense that these would be unlocalized. But does 
bicycling.se need to follow only that path? I agree 
that route a to b in city x is not a good use of this 
site; but general resources would be.”


• Map produces:  <programming: 1>  <in: 1> 
<Portland: 1> <cooking: 1> <in: 1> …



Map Reduce in Detail
• Mapper


• Combiner  — a local reducer


• Takes key-value pairs and processes them


• Example:


• Map produces:  <programming: 1>  <in: 1> 
<Portland: 1> <cooking: 1> <in: 1> …


• Combiner combines words:  <programming: 1> 
<in: 4> <Portland:  3> …



Map Reduce in Detail
• Combiners allow us to reduce network traffic 


• By compacting the same infomrmation



Map Reduce in Detail
• Mapper 

• Partitioner


• Partitioner creates shards of the key-value pairs 
produced


• One for each reducer


• Often uses a hash function or a range


• Example:


• md5(key) mod (#reducers)



Map Reduce in Detail
• Reducer 

• Shuffle and Sort


• Part of the map-reduce framework 

• Incoming key-value pairs are sorted by key into one 
large data list


• Groups keys together for easy agglomeration


• Programmer can specify the comparator, but nothing 
else



Map Reduce in Detail
• Reducer


• reduce


• Written by programmer


• Works on each key group


• Data can be combined, filtered, aggregated


• Output is prepared 



Map Reduce in Detail
• Reducer 

• Output format


• Formats final key-value pair 



Map Reduce Patterns
• Summarizations


• Input:  A large data set that can be grouped according 
to various criteria


• Output:  A numerical summary


• Example:


• Calculate minimum, maximum, total of certain fields 
in documents in xml format ordered by user-id



Summarization
• Example:


• Given a database in xml-document format


• Determine the earliest, latest, and number of posts for 
each user

<row Id="193" PostTypeId="1" AcceptedAnswerId="194" 
CreationDate="2010-10-23T20:08:39.740" Score="3" ViewCount="30" 
Body="&lt;p&gt;Do you lose one point of reputation when you 
down vote community wiki?  Meta? &lt;/p&gt;&#xA;&#xA;&lt;p&gt;I 
know that you do for &quot;regular questions&quot;. &lt;/
p&gt;&#xA;" OwnerUserId="134" 
LastActivityDate="2010-10-24T05:41:48.760" Title="Do you lose 
one point of reputation when you down vote community wiki? 
Meta?" Tags="&lt;discussion&gt;" AnswerCount="1" 
CommentCount="0" />



Summarization
• Mapper: 


• Step 1: Preprocess document by extracting the user ID 
and the date of the post


• Step 2:  map: 


• User ID becomes the key.


• Value stores the date twice in Java-date format and 
adds a long value of 1

“134”:  (2010-10-23T20:08:39.740, 2010-10-23T20:08:39.740, 1)



Summarization
• Mapper:


• Step 3: Combiner


• Take intermediate User-ID — value pairs


• Combine the value pairs


• Combination of two values:


• first item is minimum of the dates


• second item is maximum of the dates


• third item is sum of third items 



Summarization
• The map reduce framework is given the number of 

reducers


• Autonomously maps combiner results to reducers


• Each reducer gets key-value parts for a range of user-
IDs grouped by user-ID



Summarization
• Reducer:


• Passes through each group combining key-value pairs


• End-result:


• Key-value pair with key = user-id


• Value is a triple with 


• minimum posting date


• maximum posting date


• number of posts



Summarization
• Reducer:


• Each summary key— value pair is sent to client



Summarization
• Example (cont.)

UserID  12345 01.02.2010 01.02.2010 1

UserID  12345 02.02.2010 02.02.2010 1

UserID  12345 04.02.2010 04.02.2010 1

UserID 98765 12.02.2010 12.02.2010 1

UserID  98765 02.02.2010 02.02.2010 1

UserID  98765 05.02.2010 05.02.2010 1

UserID  56565 02.02.2010 02.02.2010 1

UserID  56565 03.02.2010 03.02.2010 1

UserID  12345 02.02.2010 02.02.2010 1

UserID  12345 04.02.2010 04.02.2010 1

UserID 77444 12.02.2010 12.02.2010 1

UserID  77444 02.02.2010 02.02.2010 1

UserID  98765 05.02.2010 05.02.2010 1

Mapper 1

Mapper 2

 Combiner

 Combiner

UserID  12345 01.02.2010 04.02.2010 3

UserID  98765 02.02.2010 12.02.2010 3

UserID  56565 02.02.2010 03.02.2010 2

UserID  12345 02.02.2010 04.02.2010 2

UserID 77444 02.02.2010 12.02.2010 2

UserID  98765 05.02.2010 05.02.2010 1



Summarization
• Example (cont.)  Automatic Shuffle and Sort


• Records with the same key are sent to the same 
reducer

Reducer 1

Reducer 2

Reducer 3

Mapper 1

Mapper 2

Mapper 3

Mapper 4

Mapper 123

UserID  
12345

01.02.
2010

04.02.
2010 3

UserID  
12345

02.02.
2010

04.02.
2010 2



Summarization
• Example (cont.)


• Reducer receives records already ordered by user-ID


• Combines records with same key

UserID  12345 01.02.2010 04.02.2010 3

UserID  12345 02.02.2010 04.02.2010 2

UserID  12345 26.03.2010 30.04.2010 5

UserID  12345 19.01.2010 01.04.2010 3

UserID  16542 02.02.2010 04.02.2010 6

UserID  16542 26.03.2010 29.05.2010 5

UserID  16542 19.01.2010 19.01.2010 1

UserID  12345 01.02.2010 30.02.2010 13

UserID  16542 19.01.2010 29.05.2010 12



Summarization
• In (pseudo-)pig:


• Load data

posts = LOAD ‘/stackexchange/posts.tsv.gz'

USING PigStorage('\t') AS (

post_id : long,

user_id : int,

text : chararray,

…

post : date

)



Summarization
• In (pseudo-)pig:


• Group by user-id


• Obtain min, max, count:

post_group = GROUP posts BY user_id;

result = FOREACH post_group GENERATE group,

MIN(posts.date), MAX(posts.date), 

COUNT_STAR(post_group)



Summarization
• In (pseudo-)pig:


• Load data

orders = LOAD ‘/stackexchange/posts.tsv.gz'

USING PigStorage('\t') AS (

post_id : long,

user_id : int,

text : chararray,

…

post : date

)



Summarization
• Your turn:


• Calculate the average score per user


• The score is kept in the “score”-field



Summarization
• Solution:


• Need to aggregate sum of score and number of posts


• Mapper:  for each user-id, create a record with score


• Combiner adds scores and counts


• Reducer combines as well


• Generates output key-value pair and sends it to the user


•

userid: score, 1

userid: sum_score, count

userid: sum_score/count  



Summarization
• Finding the median of a numerical variable


• Mapper aggregates all values in a list


• Reducer aggregates all values in a list


• Reducer then determines median of the list


• Can easily run into memory problems



Summarization
• Median calculation:


• Can compress lists by using counts


•                                                         becomes


• Combiner creates compressed lists


• Reducer code directly calculates median


• An instance where combiner and reducer use 
different code

2, 3, 3, 3, 2, 4, 5, 2, 1, 2

(1,1), (2,4), (3,3), (4,1) (5,1)



Summarization
• Standard Deviation


• Square-root of variance 


• Variance — Average square deviation from average


•   


• Leads to a two pass solution, calculate average first

σ =
1
N

N

∑
i=1

(xi − x̄)2



Summarization
• Standard Deviation


• Numerically dangerous one-path solution


• σ2
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Summarization
• Chan’s adaptation of Welford’s online algorithm


• Using the counts of elements, can calculate the 
variance in parallel from any number of partitions


• Unfortunately, can still be numerically instable

def parallel_variance(avg_a, count_a, var_a, avg_b, count_b, var_b):
    delta = avg_b - avg_a
    m_a = var_a * (count_a - 1)
    m_b = var_b * (count_b - 1)
    M2 = m_a + m_b + delta ** 2 * count_a * count_b / (count_a + count_b)
    return M2 / (count_a + count_b - 1)



Summarization
• Standard Deviation:


• Schubert & Gertz: Numerically Stable Parallel 
Computation of (Co)-Variance


• SSDBM '18 Proceedings of the 30th International 
Conference on Scientific and Statistical Database 
Management



Summarization
• Inverted Index


• Analyze each comment in StackOverflow to find 
hyperlinks to Wikipedia


• Create an index of wikipedia pages pointing to 
StackOverflow comments that link to them



Summarization
• Inverted Index is a group-by problem solved almost 

entirely in the map-reduce framework



Summarization / 

Inverted Index

• Mapper 

• Parser:


• Processes posts


• Checks for right type of post, extracts a list of wikipedia urls 
(or Null if there are none)


• Outputs key-value pairs :


• Keys: wikipedia url


• Value: row-ID of post


• Optional combiner:


• Aggregates values for a wikipedia url in a single list



Summarization / 

Inverted Index

• Reducer 

• Aggregates values belonging to the same key in a list



Summarization / 

Inverted Index

• Generic Inverted Index diagram
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HBase
• Based on BigTable (Google 2006)


• Uses ideas of Map-reduce and Google File System 
(replication)



HBase
• Basic unit is a column (value)


• Each column can have different versions, each stored 
in a separate cell


• Columns form rows (with row identifier)


• Groups of columns are formed in families 


• Columns accessed by family : qualifier pairs


• Rows are sorted lexicographically by row key



HBase



HBase
• Conceptually:


• HBase table looks like a relational database table


• But access is organized via tags: 



HBase
• API allows you to filter data based on conditions on the 

time



HBase
• Canonical example is the WebTable:


• Pages obtained crawling the internet


• Row key is the URL (in reverse order)


• Contents family: HTTP 


• Anchor family: out-going urls


• Time dimension allows to find pages that are updated 
frequently



HBase
• Actual storage is in regions


• A region is a contiguous collection of rows and 
columns


• If a region becomes to big: Split it around a middle row 
key


• Typical region size is a few GBs


• Each server should have between 100 and 10,000 regions



HBase
• API:


• Allows creation / deletion of tables


• Allows CRUD access


• Scan API


• Supports single-row transactions, but not cross-row 
transactions


• Map-reduce framework allows to use tables as input 
sources



HBase
• Storage implementation:


• Data is stored in HFiles


• HFiles have a block index:


• Can find a row in an HFile with a single disk seek


• HFiles are immutable


• Files are stored in the Hadoop Distributed File System 
(HDFS)



HBase
• To delete a value:


• Need to use a delete marker with the key (tombstone 
marker)


• Periodically: Go through HFiles are rewrite them, 
leaving out deleted rows



Query Languages
• Documents lend themselves to object-oriented querying


• Imperative code


• SQL is declarative:


• Programmer explains a solution


• System figures out the best way to find the solution


• Use declarative query languages for document databases



Query Languages
• Map-Reduce (neither declarative nor imperative):


• Consists of only two pieces of code


• Mapping:  Selecting from Documents


• Reducing: Take selection elements and operate on 
them



Alternatives to Relational 
Schemes: Graph Models

• Graphs consists of vertices and edges


• Example:


• Social graphs: vertices are people and edges are 
relationships such “knows”


• Web graph: vertices are pages and edges are links


• Road networks: vertices are places and edges are 
connections



Alternatives to Relational 
Schemes: Graph Models

• Relational Database hides semantic relationships



Alternatives to Relational 
Schemes: Graph Models

• Document model hides semantic relationships



Alternatives to Relational 
Schemes: Graph Models

• Some property values are really 
references to foreign aggregates


• Aggregate’s identifier is a foreign 
key


• Relationships between them are 
not explicitly accessible


• Joining aggregates becomes 
expensive



Alternatives to Relational 
Schemes: Graph Models

• Relational Database


• Some queries are simple:

SELECT p1.Person 
FROM Person p1 JOIN PersonFriend 

ON PersonFriend.FriendID = p1.ID JOIN Person p2 

ON PersonFriend.PersonID = p2.ID WHERE p2.Person = 'Bob' 




Alternatives to Relational 
Schemes: Graph Models

• Relational Database


• Some queries are more involved: Friends of Bob

SELECT p1.Person 
FROM Person p1 JOIN PersonFriend 

   ON PersonFriend.PersonID = p1.ID JOIN Person p2 

   ON PersonFriend.FriendID = p2.ID 

WHERE p2.Person = 'Bob' 

 




Alternatives to Relational 
Schemes: Graph Models

• Relational Database


• Some queries others are difficult: Alice’s friends of friends

SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND FROM 
PersonFriend pf1 JOIN Person p1 

ON pf1.PersonID = p1.ID JOIN PersonFriend pf2 

ON pf2.PersonID = pf1.FriendID JOIN Person p2 

ON pf2.FriendID = p2.ID 
WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID 

 




Alternatives to Relational 
Schemes: Graph Models

• Property graph model by Neon


• Each vertex consists of


• A unique identifier


• A set of outgoing edges


• A set of incoming edges


• A collection of properties — key-value pairs


• Each edge consists of 


• A unique identifier


• The tail vertex


• The head vertex


• A label to describe the relationship


• A collection of properties — key-value pairs



Alternatives to Relational 
Schemes: Graph Models



Alternatives to Relational 
Schemes: Graph Models

• Order history as a property graph



Alternatives to Relational 
Schemes: Graph Models

• Processing queries in Neo4j


• Use Cypher (from “The matrix”)


• Can describe a path

 (emil)<-[:KNOWS]-(jim)-[:KNOWS]->(ian)-[:KNOWS]->(emil)




Alternatives to Relational 
Schemes: Graph Models

(emil:Person {name:'Emil'})

      <-[:KNOWS]-(jim:Person {name:'Jim'})

      -[:KNOWS]->(ian:Person {name:'Ian'})

      -[:KNOWS]->(emil)




Alternatives to Relational 
Schemes: Graph Models

• Finding the mutual friends of Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-
[:KNOWS]->(c) 

RETURN b, c 




Alternatives to Relational 
Schemes: Graph Models

• Triple Stores


• Information is stored as (subject, predicate, object)


• Subjects correspond to vertices


• Objects are


• A value in a primitive data type — ( jim : age : 64)


• Another vertex — (jim : friend_of : thomas)



Alternatives to Relational 
Schemes: Graph Models

@prefix : </example>

_:lucy    a            :Person

_:lucy    :name        “Lucy”

_:lucy    :born_in     _:idaho

_:idaho   a            :Location

_:idaho   :name        “Idaho”

_:idaho   :type        “State”

_:idaho   :within      _:usa



Alternatives to Relational 
Schemes: Graph Models

• Triple stores are the language of the semantic web


• Semantic web:


• Machine readable description of type of links


• e.g. image, text, …


• Creates web of data — a database of everything


• Stored in Resource Description Framework (RDF)


• SPARQL — query language for triple stores


