
SQL Review
Thomas Schwarz, SJ

Selects from a single table
• Uses a From clause and a Where Clause

• Gives desired attribute names that can be renamed or
subjected to arithmetic calculations

Example
• We will have to pay Value Added Taxes

• Let’s assume we leave it to the clients unless we have a
presence in the country.

•

INSERT INTO VAT(country, vatrate)

VALUES

('France', 0.20),

('Japan', 0.08),

('UK', 0.20),

('Australia', 0.10);

CREATE TABLE VAT

(country VARCHAR(30) KEY,

 vatrate FLOAT)

Example
• We check the VAT-rate of our customers

• Careful: we cannot simply join the VAT table with
customers

• We need an SQL IF condition

• If (boolean, value if true, value if false)

• We check for the presence of the customer’s country
in the VAT table

Example
SELECT

 customers.customerName, customers.country,

 IF(customers.country IN

 (SELECT DISTINCT VAT.country FROM VAT),

 VAT.vatrate,

 0) AS tax

FROM

 customers, VAT;

Example
• Easiest to embed the vat calculation into a function

CREATE FUNCTION `get_vatrate`(mycountry VARCHAR(30))

 RETURNS float

 READS SQL DATA

BEGIN

 RETURN

 IF(mycountry IN (SELECT VAT.country FROM VAT),

 (SELECT VAT.vatrate FROM VAT

 WHERE VAT.country = mycountry),

 0);

END

Example
• Maybe less opaque

CREATE FUNCTION "get_vat"(my_country VARCHAR(30))

 RETURNS float

 READS SQL DATA

BEGIN

 DECLARE myvatrate FLOAT;

 SELECT

 vatrate

 INTO myvatrate

 FROM VAT

 WHERE VAT.country = my_country;

 RETURN IF(myvatrate IS NULL, 0, myvatrate);

END

Example
• We can get now order summaries for a given time

SELECT

 customerName, country, orderNumber, orderDate,

 ROUND(SUM(quantityOrdered * priceEach) *

 (1+get_vatrate(country)),2) AS "Inclusive TAX",

 ROUND(SUM(quantityOrdered * priceEach),2)

 AS "Exclusive Tax"

FROM

	 orders JOIN orderdetails USING(orderNumber)

 JOIN customers USING(customerNumber)

WHERE orderDate BETWEEN '2003-01-01' AND '2003-10-01'

GROUP BY orderNumber

ORDER BY customerName;

Dealing with NULL
• Dealing with Null values is important

• First way: Use the IFNULL function

• IFNULL(X, Y) returns X, if X is not NULL

• Otherwise returns Y

Example
• Dealing with VAT again

• A join between customers and VAT on country needs to
be an outer join

•

• or

•

customers LEFT JOIN VAT using(country)

VAT RIGHT JOIN customers using(country)

Example
• The result of the outer join has NULL values for VAT rate

SELECT

 customers.customerName, customers.country,

 IFNULL(VAT.vatrate, 0) AS tax

FROM

 customers LEFT JOIN VAT using(country);

Dealing With NULLS
• Another way is to use the COALESCE function

• Returns the first Non-null argument

Example
• Same result as before

SELECT

 customers.customerName, customers.country,

 COALESCE(VAT.vatrate, 0) AS tax

FROM

 customers LEFT JOIN VAT using(country);

Example
• A better way for the previous question is now
SELECT

 customerName, country, orderNumber, orderDate,

 ROUND(SUM(quantityOrdered * priceEach) *

 (1+ COALESCE(VAT.vatrate,0)),2) AS "Inclusive TAX",

 ROUND(SUM(quantityOrdered * priceEach),2)

 AS "Exclusive Tax"

FROM

	 orders JOIN orderdetails USING(orderNumber)

 JOIN customers USING(customerNumber)

 LEFT JOIN VAT USING(country)

WHERE orderDate BETWEEN '2003-01-01' AND '2003-10-01'

GROUP BY orderNumber

ORDER BY customerName;

Select from Multiple Tables
• “Classic” SQL makes implicit joins

• “New” SQL has explicit joins

• In general makes for more understandable statements

• MySQL only has left and right joins, not outer joins

Inner vs. Outer Joins
• A tuple in an inner join on a set of attribute:

• In both tables, these attributes have the same value

• Outer joins allow for missing values, in which case they
become Nulls

Example
• Right Join: All tuples in the left table are represented

SELECT

 customerName, city, country, vatrate

FROM

 VAT RIGHT JOIN customers using(country);

Example
• If we switch, we loose tuples

SELECT

 customerName, city, country, vatrate

FROM

 customers RIGHT JOIN VAT USING (country);

Aggregate Queries
• Without aggregate function

• GROUP BY has the effect of distinct

• GROUP BY orders SELECT status

FROM orders

GROUP BY status;

Aggregate Queries
• With aggregate function

SELECT

 status, SUM(priceEach * quantityOrdered) AS VOLUME

FROM

 orders

 JOIN

 orderdetails USING (ordernumber)

GROUP BY status WITH ROLLUP;

Aggregate Queries
• With aggregate function

SELECT

 status, COUNT(*) AS Incidences

FROM

 orders

 JOIN

 orderdetails USING (ordernumber)

GROUP BY status WITH ROLLUP;

Aggregate Queries
• We use a WHERE clause to sub-select before grouping

SELECT

 status, COUNT(*) AS Incidences

FROM

 orders

 JOIN

 orderdetails USING (ordernumber)

WHERE YEAR(orderDate) = 2004

GROUP BY status WITH ROLLUP;

Aggregate Queries
SELECT

 YEAR(orderDate) as YEAR,

 SUM(priceEach * quantityOrdered) AS "Cancelled Volume"

FROM

 orders

 JOIN

 orderdetails USING (ordernumber)

WHERE status = 'cancelled'

GROUP BY YEAR(orderDate) WITH ROLLUP;

Aggregate Queries
• A MySQL specialty not in SQL:

• You can have an alias in Group By:

SELECT

 YEAR(orderDate) as year, SUM(priceEach *
quantityOrdered) AS "Cancelled Volume"

FROM

 orders

 JOIN

 orderdetails USING (ordernumber)

WHERE status = 'cancelled'

GROUP BY year WITH ROLLUP;

Alias

Aggregate Queries
• WHERE

• Filters Records

• HAVING

• Filters Groups

SELECT

 select_list

FROM

 table_name

WHERE

 search_condition

GROUP BY

 group_by_expression

HAVING

 group_condition;

Aggregate Queries
• Example:

• Overview of orders in January 2003
SELECT

 ordernumber,

 shippedDate,

 SUM(quantityOrdered) AS itemsCount,

 SUM(priceeach*quantityOrdered) AS total

FROM

 orderdetails JOIN orders USING(ordernumber)

WHERE shippedDate between "2003-01-01" AND "2003-01-31"

GROUP BY ordernumber;

Aggregate Queries
• What about big orders only?

SELECT

 ordernumber,

 shippedDate,

 SUM(quantityOrdered) AS itemsCount,

 SUM(priceeach*quantityOrdered) AS total

FROM

 orderdetails JOIN orders USING(ordernumber)

WHERE shippedDate between "2003-01-01" AND "2003-01-31"

GROUP BY ordernumber

HAVING total > 10000.00;

Common Table Expressions
• Creates a named, temporary table to simplify queries

• Defined with a WITH clause

WITH cte_name (column_list) AS (

 query

)

Example
WITH customers_in_asia AS (

	 SELECT *

 FROM customers

 WHERE country in

 ('Japan', 'India', 'Singapore', 'Hong Kong’,

 'Philippines')

)

SELECT * FROM customers_in_Asia;

Example
• Finding the top sales people in 2004

WITH topsales AS (

 SELECT employeeNumber, firstName, lastName,
SUM(quantityOrdered*priceEach) AS sales, officeCode

 FROM orderdetails JOIN orders USING(orderNumber)

 JOIN customers USING(customerNumber)

 JOIN employees ON
salesRepEmployeeNumber = employeeNumber

 WHERE YEAR(shippedDate) = 2004

 GROUP BY salesRepEmployeeNumber

 ORDER BY sales DESC

 LIMIT 5)

 SELECT * FROM topsales;

Example
• Which is the most successful office? Only top

salespeople count:

Example
WITH topsales AS (

 SELECT employeeNumber, firstName, lastName,

 SUM(quantityOrdered*priceEach) AS sales, officeCode

 FROM orderdetails JOIN orders USING(orderNumber)

 JOIN customers USING(customerNumber)

 JOIN employees ON

 salesRepEmployeeNumber = employeeNumber

 WHERE YEAR(shippedDate) = 2004

 GROUP BY salesRepEmployeeNumber

 ORDER BY sales DESC

 LIMIT 5)

 SELECT SUM(sales) as volume, city, country

 FROM topsales JOIN offices USING(officeCode)

 GROUP BY officeCode

 ORDER BY volume DESC;

