
Neo4j

Neo4j
• Neo4j Graph Database

• Store nodes together with adjacencies as pointers

• Edge chasing is quick

Neo4j
• Implements ACID transaction model

• Is schema-less

• Nodes can have any property

• Nodes can have any type of relation to another node

• Query language “Cipher” does matching

Neo4j
• Modeling with diagrams can be simpler

Bob

Caissa
Chess
Club

belongs_to

User

id: int
name: string

Group

id: int
name: string

User-Group

user_id: int
group_id: int

• Cypher uses ASCII-art for queries

Neo4j

MATCH (p)-[:belongs_to]->(g)
WHERE p.name = "Bob"
RETURN g.name

MATCH (p)-[:belongs_to]->(g)
WHERE g.name = "Caissa Chess Club"
RETURN p.name

Neo4j
• More complicated relations are harder to represent in

relational tables
Bob

DB
Security

DB-
Admin

Write
Permission

/ssrc/db

has
permission

has_role
belongs_to

has
permission

has
permissionSSRC

is_subgroup

Neo4j
• Nodes and relationship can have many properties

name: Bob Cat
type: User

name: Alice Bat
type: User

name: Trudy Sow
type: User

name: Fargo
type: Movie

name: Alien$
type: Movie

name: Herbie
type: Movie

is
friend

of

has_seen
rating: 3

has seen
rating: 2has seen

rating: 5
has seen
rating: 4

Neo4j
• Create a project using

Neo4j Desktop

• Make sure to stop a
currently running DBMS

• Use the stop button

• On the left sidebar, click
new

• This creates a project
named "Project"

Neo4j

• Click on
Create
project

Neo4j
• Next to the name, you

can edit

• Hover your mouse so
that you can see the
button

• Change the name and
then click the check
mark

Neo4j
• You need to create a database in the project

• Click the add button on the right

• You can select the Neo4j version

• Which might trigger an update

• You need to select a password with >= 8
characters

• Hit the create button

• You can start and stop a database by
hovering to the right of the database name

Neo4j
• Importing data with csv

• Download from

• https://s3.amazonaws.com/dev.assets.neo4j.com/
wp-content/uploads/desktop-csv-import.zip

• OR

• Go to the tutorial

• "how to import csv file in neo4j desktop"

Neo4j
• You need to place the downloaded csv files in an import

directory

• To the right of the DBMS, there are three dots for options

Neo4j
• Click on the "import" menu item

• This should open up a directory viewer

• Copy or move your csv files there

Neo4j
• Start the Neo4j Browser

•

Neo4j
• At the very top of the browser, there is a window for

commands

• Inside this window on the right is the "execute" / "play"
button

• When it opens, most of the real-estate is used up by
helpful links

Neo4j
• We can look at csv-file contents with LOAD CSV

• This will not import data.

• In the window on top, type in (or copy from the tutorial)

• LOAD CSV FROM 'file:///products.csv' AS
row RETURN row LIMIT 10;

• Notice the three forward slashes

• This will display the first 10 rows

• On the left, you can select the visualization: Table,
Text, Code

Constraints
• You can use constraints to filter out bad data

• Create a constraint "uniqueproduct"

• create constraint uniqueproduct FOR
(p:Product) require p.id is unique;

• Do the same for orders:

• create constraint uniqueorder FOR
(o:Order) require o.id is unique;

Conversions
• When importing data, we need to convert strings to other

data-types

• toInteger

• toFloat

• datetime or date

• toString

Conversions
• You can try out the result of conversions on csv data:

• LOAD CSV FROM 'file:///products.csv' AS row
WITH toInteger(row[0]) AS productId,
row[1] AS productName,
toFloat(row[2]) AS unitCost
RETURN productId, productName, unitCost
LIMIT 3;

Conversions
• For orders, some string surgery is needed:

• The csv file has data times with a space

• Neo4j needs a T instead:

• 1996-07-04 00:00:00.000 —> 1996-07-04
T00:00:00.000

LOAD CSV WITH HEADERS FROM 'file:///orders.csv'
AS row
WITH toInteger(row.orderID) AS orderId,
datetime(replace(row.orderDate,' ','T')) AS orderDate,
row.shipCountry AS country
RETURN orderId, orderDate, country
LIMIT 5;

Conversions

LOAD CSV WITH HEADERS FROM 'file:///order-details.csv'
AS row
WITH toInteger(row.productID) AS productId,
toInteger(row.orderID) AS orderId,
toInteger(row.quantity) AS quantityOrdered
RETURN productId, orderId, quantityOrdered
LIMIT 8;

Database Design
• Datamodel:

• Orders (orange) and products (violet) are nodes

• Order-details gives the relationship

Creating Data
• Now we are ready to create the elements in the data-base

• We use Merge because a constraint violation will not
cause the rest of the operation to abort

LOAD CSV FROM 'file:///products.csv' AS row
WITH toInteger(row[0]) AS productId, row[1] AS
productName, toFloat(row[2]) AS unitCost
MERGE (p:Product {productId: productId})
SET p.productName = productName,
p.unitCost = unitCost
RETURN count(p);

Creating Data
LOAD CSV WITH HEADERS FROM 'file:///orders.csv' AS row
WITH toInteger(row.orderID) AS orderId,
datetime(replace(row.orderDate,' ','T')) AS orderDate,
row.shipCountry AS country
MERGE (o:Order {orderId: orderId})
SET o.orderDateTime = orderDate,
o.shipCountry = country
RETURN count(o);

Creating Data
LOAD CSV WITH HEADERS FROM 'file:///order-
details.csv' AS row

WITH row
MATCH (p:Product {productId:
toInteger(row.productID)})
MATCH (o:Order {orderId: toInteger(row.orderID)})
MERGE (o)-[rel:CONTAINS {quantityOrdered:
toInteger(row.quantity)}]->(p)

Checking
• Create a generic match

Checking
• Create a specific match

Checking
• You can look at our primitive model with

• call db.schema.visualization

Cypher
• Selection and Projection:

• Match

• MATCH (p:Product)
RETURN p.productName, p.unitCost
ORDER BY p.unitCost DESC
LIMIT 10;

Cypher
• Use a WHERE clause for properties

MATCH(o:Order)-[rel:CONTAINS]->(p:Product)
WHERE o.shipCountry="Germany" AND
rel.quantityOrdered > 50
RETURN p, rel, o
LIMIT 100;

Cypher
• Can use String functions:

MATCH(o:Order)-[rel:CONTAINS]->(p:Product) WHERE
p.productName Starts WITH "Uncle Bob"
RETURN p, rel, o
LIMIT 100;

Cypher
• Creating Nodes

• Create (myProduct:Product{productId:
543210, productName: "California
Raisins", unitCost: 2.35})

• Match (p:Product) WHERE p.productName
STARTS WITH "California" RETURN p;

Cypher
• CREATE(myneworder:Order

{orderDateTime:
datetime("2024-07-31T12:13:00.000"),
orderID: 555550,
shipCountry: "India"})

Cypher
• Relationships:

• Need to find the nodes first with Match

• Then create a relationship between nodes

MATCH (rosie:Product{productName: "California
Raisins"}), (oscar:Order{orderId:555550}) CREATE
(oscar)-[:CONTAINS{quantityOrdered:20}]->(rosie);

Cypher
• Check existence

Match (o:Order)-[r:CONTAINS]->(p:Product)
WHERE p.productName STARTS WITH "California"
RETURN o, p, r;

Cypher
• Queries:

• Nodes have round brackets ()

• Relationships have []

Match ()-[r:CONTAINS]->()
WHERE r.quantityOrdered > 100
RETURN r;

Cypher
• Merge

• "MERGE either matches existing nodes and binds
them, or it creates new data and binds that. It’s like a
combination of MATCH and CREATE that additionally
allows you to specify what happens if the data was
matched or created."

Aggregates
• Aggregates aggregate values:

• SUM

• MAX

• COUNT

• MIN

Aggregates
• Finding the product with highest quantity ordered

• Two stages:

• Find maximum

• Find products

MATCH (:Order)-[r:CONTAINS]->(p:Product) WITH
max(r.quantityOrdered) as maximum RETURN maximum

Aggregates
• Need to use COLLECT in order to find all products where

the maximum is reached

MATCH (o:Order)-[r:CONTAINS]->(p:Product)
WITH max(r.quantityOrdered) AS mm
MATCH (o1:Order)-[r:CONTAINS]->(p1:Product)
WHERE r.quantityOrdered = mm
RETURN COLLECT(p1.productName)

Aggregates
• Find the quantities of orders for products

MATCH (o:Order)-[r:CONTAINS]->(p:Product)
RETURN p.productName, SUM(r.quantityOrdered)

Graph Distance
• Create nodes:

• Create node with id 5 twice

CREATE (n: Label {myID:1})

Graph Distance
• Can use a loop with FOREACH

WITH [2,3,4,5,6,7,8] AS identifiers
FOREACH (value IN identifiers | CREATE (:Label {myID : value}));

Graph Distance
• Create edges: First Match left, then right node:

MATCH (a {myID:1}) MATCH (b {myID:2})
CREATE (a)-[:ADJ]->(b)

Graph Distance
• To check your progress:

Match (a)-[r]->(b)
Return a, r, b;

Graph Distance
• Can only deletes nodes without relationship

• We need to delete the nodes with myID 5

Graph Distance
• Delete with delete

• After deleting all relationships:

MATCH (n:Label {myID: 3})-[r:ADJ]->(m: Label{myID: 5})
DELETE r;

Match(n: Label {myID: 5})
DELETE n

Graph Distance
• Using FOREACH is tricky

• Need to use Merge instead of Match

• We use lists for tuples:

WITH [[2,4], [3,5], [4,5], [5,7]] as adjacencies
FOREACH (
 pair IN adjacencies |
 MERGE (a {myID: pair[0]})
 MERGE (b {myID:pair[1]})
 CREATE (a)-[:ADJ]->(b)
);

Graph Distance
• Reachable in two hops from 1

Match ({myID:1})-[:ADJ]->()-[:ADJ]->(non :Label)
RETURN non.myID

Graph Distance
• Reachable in two hops from 1, but not in one

• Use * to indicate number of hops

• Use - to indicate bi-direction

MATCH (one:Label {myID:1})-[:ADJ*2]->(non)
WHERE NOT (one)-[:ADJ]-(non)
RETURN non.myID

Graph Distance
• Better use collect

• And even better: distinct

MATCH (one:Label {myID:1})-[:ADJ*]->(non) RETURN
Collect(non.myID)

MATCH (one:Label {myID:1})-[:ADJ*]->(non)
RETURN Collect(distinct non.myID)

Group Quiz
• Create a list of all node labels in the graph.

Solution
MATCH (node) RETURN COLLECT(DISTINCT node.myID);

Netflix Database
• Download and unzip the netflix dataset from Kaggle:

netflix_titles.csv

• Create a new Neo4j project

• Place the csv file into the import folder

Netflix Database
• Now we relearn how to import data

• We can use the csv headers to access values

LOAD CSV WITH HEADERS
FROM 'file:///netflix_titles.csv' AS line
CREATE (

:Movie {
 id: line.show_id,
 title: line.title,
 releaseYear: line.release_year
}
)

Netflix Database
• Comma separated lists

• UNWIND: Do something for every item in a list

WITH "United States, India, France"
 AS countries_as_string
WITH split(countries_as_string, ",") AS
 countries_as_list
UNWIND countries_as_list AS country_name
RETURN trim(country_name)

Netflix Database
• We need to parse the director's list when importing

• MERGE: create when the node does not exist

LOAD CSV WITH HEADERS FROM
 'file:///netflix_titles.csv' AS line
WITH split(line.director, ",") AS directors_list
UNWIND directors_list AS director_name
MERGE (:Person {name: trim(director_name)});

Netflix Database
• MERGE can be problematic because we match exactly

• We can specify what we want to do depending on
whether we are modifying or creating a new node

• MERGE (p:Person {name: "Bob"})
ON CREATE SET p.surname = "Cat"
ON MATCH SET p.birthDate = "1969-01-09"

Netflix Database
• We delete everything and put everything into a single

statement

LOAD CSV WITH HEADERS FROM
 'file:///netflix_titles.csv' AS line
CREATE (m:Movie
 {id: line.show_id,
 title: line.title,
 releaseYear: line.release_year})
WITH m, split(line.director, ",") as directors_list
UNWIND directors_list AS director_name
MERGE (p:Person {name: director_name})
MERGE (p)-[:Directed]-> (m)

