Relational Model of
Data

Thomas Schwarz, SJ

Data Model

* Notation for describing data
1. Structure of the Data
e Conceptual level, not binary
2.0perations on Data
* Limits on operations are useful!

3.Constraints on Data

Data Model

e |In this class:
e Relational Data Model

e Semi-structured Data Model

Relational Data Model

e Relational Model iIs based on Tables

|Title Year Length Genre
Gone with the wind 1939 231 drama
Star wars 1977 124 Scifi
Wayne’s world 1992 95 comedy

* The tables are conceptual

 Implementations will differ

Relational Data Model

 QOperations are part of Relational Algebra

e (Constraints
e On individual attributes
e Non-null constraints

* Unique constraints

e On tuples

Semi-Structured Data
Model

e Data is presented (in general) using trees or graphs
e Popular formats
e XML
e JSON

* Describing metadata stored with data

"hollywood": {
"movies": |
{
"title": "Gone with the wind",
"year": "1939",
"length": "231",
"genre": "drama"

"title": "Star wars'",
"year": "1977",
"length": "124",
"genre": "scifi"

"title": "Gone with the wind",
"year": "1992",

"length": "95",

"genre": "comedy"

Object Oriented Data Model

Values can have structure, not just primitive types

Relations can have associated methods

No consensus on how OO DBMS should look like
Industry implemented Object-Relational DBMS

e \alues no longer need to be primitive

Relational Data Model

e Attributes:

 Columns of a table are named by attributes

e Schemas:
e Name of a relation and the set of attributes
® Movies(title, year, length, genre)
e Tuples:
e Rows of a table (other than header row)

o (Gone with the wind, 1939, 231, drama)

Relational Data Model

e Domains

* All components of a tuple are atomic

* All components of a tuple must be in domain

* Movlies (title:string, year:integer,
length:integer, genre:string)

Aside

e Some DB allow users to define a domain

 Postgresql example

CREATE DOMAIN us_postal_code AS TEXT
CHECK(
VALUE ~ '™\d{5}$'
OR VALUE ~ '™\d{5}-\d{4}$'
);

CREATE TABLE us_snail_addy (
address_id SERIAL PRIMARY KEY,
streetl TEXT NOT NULL,
street2 TEXT,
street3 TEXT,
city TEXT NOT NULL,
postal us_postal _code NOT NULL

Relational Data Model

Equivalent representation of a relation
e Tables are sets of tuples
e Attributes form a set

Can reorder rows and columns, but obtain the same table

Year Genre Title Length

1977 scifi Star wars 124

1992 comedy Wayne's g5
world

1939 drama Gone with 534

the wind

Relational Data Model

 Keys:
* A set of attributes (always non-null):
* [wo tuples cannot share the same values in this set
e Example:
* Movies Table:
* title and year form a key

* No two movies in the same year have both the
same title and the same year

o Movies (title, year, length, genre)

Relational Data Model

e Keys
e Can be single attribute:

e All persons working in the US (should) have a Social
Security Number (SSN)

e SSN are unique
e Can be artificial tuple ids

e Are defined locally (Marquette ID numbers)

Relational Data Model

e Example

Movles (title: string,

yvear: string,

length: 1nteger,
genre: string,
studioName: string,

producerC#: integer)

Relational Data Model

e Example

MovieStar (name: string,

yvear: string,

address: string,
gender: char,

birthdate: date)

Relational Data Model

e Example

StarsIn (movieTitle: string,

movieYear: 1nt,

starName: string)

Relational Data Model

e Example

MovieExec (name: string,
address: string,

cert#: integer,

netWorth: 1nteger)

Relational Data Model

e Example

Studio (name: string,

address: string,

presC#: integer)

SQL DDL

e Create a database with CREATE DATABASE

CREATE DATABASE IF NOT EXISTS UsSNavy;

SQL DDL

e Three type of tables in SQL
e Stored Relations, called tables
* \Views: relations calculated by computation

 Jemporary tables: created during query execution

SQL DDL

e Data Types

» Character strings of fixed or varying length

e CHAR(nN) - fixed length string of up to n characters

e VARCHAR(n) - variable length string of up to n characters

 Uses and endmarker or string-length for storage

efficiency

e Bit strings

e B
e B

'(n) strings of length exactly n

" VARYING(n) - strings of length up to n

SQL DDL

e Data lTypes:
e Boolean: BOOLEAN: TRUE, FALSE, UNKNOWN
e Integers: INT = INTEGER, SHORTINT
e Floats: FLOAT = REAL, DOUBLE, DECIMAL(n,m)
 Dates: DATE
e SQL Standard: ‘1948-05-14")
e Times: TIME
e SQL Standard: 19:20:02.4

SQL DDL

e Data lTypes:

e MySQL: ENUM('M', 'F")

SQL DDL

e CREATE TABLE creates a table

CREATE TABLE Movies (

title CHAR (100),
year INT,
length INT,
genre CHAR(10),

studioName CHAR (30),
producerC# INT

SQL DDL

CREATE TABLE MovieStar (

name CHAR (30),
address VARCHAR (255),
gender CHAR (1),

birthday DATE

SQL DDL

* Drop Table drops a table

DROP TABLE Movies;

SQL DDL

* Altering a table with ALTER TABLE
o with ADD followed by attribute name and data type
* with DROP followed by attribute name

ALTER TABLE MovieStar ADD phone CHAR(1606);

ALTER TABLE MovilieStar DROP Birthday;

SQL DDL

e Default Values
e Conventions for unknown data

e Usually, NULL

e (Can use other values for unknown data

CREATE TABLE MovieStar (

name CHAR (30),
address VARCHAR (255),
gender CHAR (1) DEFAULT '?',

birthday DATE DEFAULT '0000-00-00"
) ;

SQL DDL

 Declaring Keys
1. Declare one attribute to be a key
2. Add one additional declaration:
e Particular set of attributes is a key
e Canuse
1. PRIMARY KEY
2. UNIQUE

SQL DDL

UNIQUE for a set S:

 Two tuples cannot agree on all attributes of S unless
one of them is NULL

 Any attempted update that violates this will be
rejected

PRIMARY KEY for a set S:
e Attributes in S cannot be NULL

SQL DDL

CREATE TABLE MovieStar (

name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
gender CHAR (1),

birthday DATE

SQL DDL

CREATE TABLE MovieStar (

name CHAR (30),

address VARCHAR (255),

gender CHAR (1) DEFAULT '?',
birthday DATE DEFAULT '0000-00-00",

PRIMARY KEY (name)

SQL DDL

CREATE TABLE Movies (

title CHAR (100),
year INT,
length INT,

genre CHAR(10),

studioName CHAR (30),
producerC# INT,
PRIMARY KEY (title, vyear)

An Algebraic Query
Language

Set operations

Selection (removes rows) and Projection (removes
columns)

Combination operations: Cartesian products, joins

Renaming

An Algebraic Query
Language

e Set operations for relations

e Assume R and S are relations with
e |dentical sets of attributes

e ordered in the same way
e RUS Union
e RN S Intersection

e R — § Difference

An Algebraic Query
Language

* Projection
e Creates a new relation with a subset of the attributes

o 74 a4 (R) isthe relation with values from R but
only attributes A, A,, ..., A,

An Algebraic Query
Language

e Selection

e 0cond(R) is arelation with the same attributes, but
only tupes from R that satisfy the condition

An Algebraic Query
Language
e Cartesian product R X S

e Assumes that set of attributes are disjoint

e The same as for sets

e RxS={(r9s)|reRrR,seS}.

An Algebraic Query
Language

e Natural join R X §

e New relation with attributes that are attributes in one or
the other relation

e All combinations of tuples in R and S that agree on all
common attributes.

An Algebraic Query
Language

e Example: R A B S A C
1 2 1 4
3 4 5 ©
5 6

e (Cartesian Product

* Needs to make attributes disjoint

R x S R. S.

g1 o1 w WK R~
oY O) D D NN T
g1~ o1~ o
o Doy Doy D (D

An Algebraic Query

Language
e Example: R A B S A C
1 2 1 4
3 4 5 ©
5 6

 Natural join: Common attribute is A

e | ook at common values

R X S A B C

An Algebraic Query

Language
e Example: RABC S A B D
1 1 2 1 1 2
1 3 1 1 5
2 4 2 1 4
2 2 1

 Natural join: All combinations of tuples with equal values
for A and B:

RS

e e S
i es
W W NN A
g N 0N g

An Algebraic Query
Language
e O - Joins (Theta Joins)

 Natural joins compares sub-tuples based on equality

 Theta joins use arbitrary boolean conditions on
attribute values

* The condition is indicated as a subscript under the
bowtie, usually named 6.

O
m A n oo
e A 10O O N O~ oMM

C g M — N A B.lZlZ
N a L o < S e
m =3) M/n_ s oo
a © .
e n R < MM
o © X .
N O N M ._hl. Nau

M AN — ™M W =
- A
A { — O ™M Nﬂu

a R

e Example

An Algebraic Query
Language

e Example
R A B C S A B D
1 2 1 1 1 5
0 1 2 1 2 ©
3 3 3 4 1 2

+ RX,S with 0=((R.A%S.AANDR.B=S.B)

N — (O
N o T

An Algebraic Query
Language

e Combining operations to form queries

e Example: What are the titles and years of movies made
by Fox that are at least 100 minutes long

Ttitle,year

Plength>100 o StudioTamefox

Movies Movies

An Algebraic Query
Language

Ttitle,year

9length>100 Ustudiorwame_fox

Movies Movies

Ttjtleyear(Glengthx100(MoVies) N Ostydioname=fox(Movies))

An Algebraic Query
Language

e Query Optimizer
* First translate query to an expression tree

* Then apply transformation rules to generate equivalent
expression trees

e with lower associated run-times

An Algebraic Query
Language

e Naming and Renaming

* |Instead of following a convention, we use an explicit
rename operator

* PSAA,....A)R) Yields
e A relation called S

o with attributes called A, A,, ... , A

n

An Algebraic Query
Language

* Relationships among operations
* There are some algebraic identities
e RNS=R-(R-19)
e RS =0(RXS)
* This means that we can only use operations
e Selection
* Projection
* Product
* Renaming
e Union

e Difference

Constraints on Relations

* (Constraints restrict the ability to insert data into relations

* Necessary for maintaining data integrity

Constraints

 Expression in Relational Algebra
e R = @ for any relational algebra expression R

e R C S forany relational algebra expressions R, S

Referential Integrity
Constraint

* Referential Integrity constraints

* An attribute value appearing in one relation should also
be in another relation

e Example: A star should be the star of at least one
movie

° ﬂA(R) C ﬂA(S)

Referential Integrity
Constraint

e Selftest:
* Movies(title, year, length genre, studioName, producerC#)
* MovieExec(name, address, cert#, net\Worth)

* How do we insure that all producers appear in the
MovieExec table?

Referential Integrity
Constraint

e Answer

* TproducerC#(Movies) C 7gert#(MovieExec)

Referential Integrity
Constraint

e Selftest
e Any movie in
e Starsin(movieTitle, movieYear, starName)

* needs to appear in

 Movies(title, year, length genre, studioName, producerC#)

Referential Integrity
Constraint

e Solution

* TmovieTitle, movieYear(Starsin) C rijtje, year(Movies)

Key Constraints

 Use Relational Algebra to express that an attribute is a
key?

* Any two tuples with the same value in the key must be
the same

 Create a Cartesian Product to get all pairs of tuples
* Need to rename the copies for clarity

e Then use a Select on the product

Key Constraints

e Example:
* MovieStar(hame, address, gender, birthday)

1. Create two copies
* PMS1(name, address, gender, birthday(MOVieStar)

* PMS2(name, address, gender, birthday(MOVieStar)

2. Make sure that name determines address

* OMS1.name=MS2.name AND MS1.address=MS2.address(MS1 X MS2) = &

3. Continue: name determines Gender

4. Continue: name determines birthday

Constraints

e Quiz:

e \/alue constraint:

Referential Integrity
Constraint

”gender(MovieStar) c {'M',/ F',’ NB'}

Constraints

e Quiz:
e Given:

e MovieExec(hame, address, cert#, netWorth)

e Studio(name, address, presC#)

 EXpress the property rule that one can only be the

president of a studio if the net worth exceeds
US$10,000,000.00

Referential Integrity
Constraint

“presC# (Studio) C 7gert# <"netWorth>10000000.00(M°VieExec))

