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Contents
• There are many ways a database scheme can be 

constructed


• A poorly designed scheme:


• Has problems with checking constraints


• Has problems with data coherence


• E.g. two different spellings of the same person's 
first name


• Has problems with performance



Contents
• Design theory helps to design efficient schemes


• Functional dependencies 


• Used in the definition of a key


• Used for flagging potentially bad records


• Normal forms


• Get rid of anomalies


• Get rid of redundant storage of data


• Expand to multivalued dependencies



Functional Dependencies
• About the nature of data


• Think about it as the potential contents of a table


• Instead of the actual contents


• Example:


• Students can have a double major


• But an actual set of students might not include a 
student with double major



Functional Dependencies
• A form of constraint for a relation


• Functional Dependency (FD) for table  


• FD 


• with 


• If a tuple's values agree for attributes  


• Then they agree for attributes  

R(𝕏)

A1, A2, …An ⟶ B1, B2, …, Bm

A1, …, An, B1, …, Bm ∈ 𝕏

A1, …, An

B1, B2, …, Bm



Functional Dependencies
• Only consider FD with one attribute on the right


• Because FD  is 
equivalent to all of:


• 


• 


•                         


•

A1, A2, …An ⟶ B1, B2, …, Bm

A1, A2, …An ⟶ B1

A1, A2, …An ⟶ B2

⋮

A1, A2, …An ⟶ Bm



Functional Dependencies
• Example:


• Movies1( title, year, length, genre, 
studioName, starName) 

• Find all FDs



Functional Dependencies
• title, year —> length 

• title, year —> genre 

• title, year —> studio 

• However:


• title, year  starName 

• is not an FD

↛



Keys
• A superkey is a set of attributes in a table that 

determines all attributes


• 


•   is a superkey if


•

R(A1, A2, …An)

Ai1, Ai2, …Aim

∀j : Ai1, Ai2, …Aim ⟶ Aj



Keys
• A key is a minimal superkey with respect to set inclusion


• I.e. A superkey so that no attribute in it can be reomved


• If a key consists of a single attribute, then we call the 
attribute the key instead of the set with only element this 
attribute



Functional Dependencies
• Quiz:  Given  and FDs  and , 


• Does this mean ?

R(A, B, C) A → B B → C

A → C



Functional Dependencies
• Answer:  Yes.


• Show that all tuples that agree on attribute A also agree 
on attribute C


• Called transitivity



Functional Dependencies
• A set  of FDs follows from a set  of FDs if every relation 

instance satisfying all FDs in T also satisfies all FDs in S


• Sets of FDs are equivalent if the set of relation instances 
satisfying one is equal to the set of relation instances 
satisfying the other one.

S T



Functional Dependencies
• The splitting rule:  


•   is equivalent to  


• 


• 


•                         


•

A1, A2, …An ⟶ B1, B2, …, Bm

A1, A2, …An ⟶ B1

A1, A2, …An ⟶ B2

⋮

A1, A2, …An ⟶ Bm



Functional Dependencies
• The combining rule:  


• The set of  FDs


• 


• 


•                         


• 


• is equivalent to 

A1, A2, …An ⟶ B1

A1, A2, …An ⟶ B2

⋮

A1, A2, …An ⟶ Bm

A1, A2, …An ⟶ B1, B2, …, Bm



Functional Dependencies
• Quiz:  Does  imply 

?
A1, A2, …, An ⟶ B

X, A1, A2, …, An ⟶ B



Functional Dependencies
• Quiz:  Does  imply 

?


• Yes: 


• Called augmentation

A1, A2, …, An ⟶ B
X, A1, A2, …, An ⟶ B



Functional Dependencies
• Trivial FDs


•                       (Reflexivity)


•                    (Reflexivity & Augmentation)


• Trivial Dependency Rule:


•  is equivalent to 


•  


• where the  are those of the  that are not among 
the 

Ai → Ai

A, B → A

A1A2…An → B1B2…Bm

A1A2…An → C1C2…Cr

Ci Bi
Ai



Functional Dependencies
• Closure:


• Let  be a set of functional dependencies


• Let  be a set of attributes


• The closure of  is the set  of attributes  such 
that every relation that satisfies all the FDs in  also 
satisfies .

𝕊

𝔸 = {A1, A2, …, An}

𝔸 𝔸+ B
𝕊

A1, A2, …, An → B



Functional Dependencies
• Closure calculation algorithm


• Input:  a set of attributes  and a set of functional dependencies .


• Output:  


1. Split all FDs in  so that there is only a single attribute on the right


2.Set  to be .


3.Repeatedly search for some FD  such that 
 and .  Then add  to 


4.Stop when the search fails and output .

𝔸 𝕊

𝔸+

𝕊

𝕏 𝔸

B1, B2, …, Bm → C ∈ 𝕊
B1, B2, …, Bm ∈ 𝔸 C ∉ 𝔸 C 𝕏

𝕏 = 𝔸+



Functional Dependencies
• Consider the relation scheme R = {E, F, G, H, I, J, K, L, M} 

and the set of functional dependencies {{E, F} -> {G}, {F} 
-> {I, J}, {E, H} -> {K, L}, K -> {M}, L -> {N} on R. What is 
the key for R?:


• {E}


• {E,F}


• {E,F,H}


• {E,F,H,K,L}


• Hint: calculate the closure of all possible answers



Functional Dependencies
• First, normalize {{E, F} -> {G}, {F} -> {I, J}, {E, H} -> {K, L}, 

K -> {M}, L -> {N}


• 


• Start with . 


• There is no FD that has only E on the left side 


•

{{E, F} → G, {F} → I, {F} → J, {E, H} → K, {E, H} → L, K → M, L → N}

{E}

{E}+ = {E}



Functional Dependencies
• 


• Now try 


• We can add G to .  


• We can add I to .


• We can add J to .


• Then we are stuck: 

{{E, F} → G, {F} → I, {F} → J, {E, H} → K, {E, H} → L, K → M, L → N}

{E, F} = 𝕏

𝕏

𝕏

𝕏

{E, F}+ = {E, F, G, I, J}



Functional Dependencies
• 


• Now try 


• We can add G to  because of (1).  


• We can add I to  because of (2): 


• We can add J to  because of (3): 


• (4) gives 


• (5) gives 


• (6) gives 


• (7) gives 


• Therefore  contains all the attributes.  


• Since ,  is a minimal candidate key and therefore a key. 

{{E, F} → G, {F} → I, {F} → J, {E, H} → K, {E, H} → L, K → M, L → N}

{E, F, H} = 𝕏

𝕏

𝕏 𝕏 = {E, F, G, H, I}

𝕏 𝕏 = {E, F, G, H, I, J}

𝕏 = {E, F, G, H, I, J, K}

𝕏 = {E, F, G, H, I, J, K, L}

𝕏 = {E, F, G, H, I, J, K, L, M}

𝕏 = {E, F, G, H, I, J, K, L, M, N}

{E, F, H}+

{F, H}+ = {F, H, I, J} {E, F, H}



Functional Dependencies
• Why does closure work


• Need to show equivalency of :  


•  with regards to  


• Every relation fulfilling  fulfills   

B ∈ {A1, A2, …, An}+ 𝕊

𝕊 A1A2…An → B



Functional Dependencies
• Why does 


•  with regards to  


• imply


• Every relation fulfilling  fulfills   


• Look at the first time adding an attribute to  leads to an FD  that 
is not true.


• But  was added using a FD  


• Because this is the first time and  follow from the  in all 
relations, 


• Thus, a tuple equal in  is also equal in all  and hence equal 
in .


• Therefore  has to be true and we have a contradiction

B ∈ {A1, A2, …, An}+ 𝕊

𝕊 A1A2…An → B

𝕏 A1A2…An → B

B X1, X2, …Xm → B
X1, X2, …Xm A1A2…An

A1A2…An → X1, …Xm

A1A2…An X1, …Xm
B

A1A2…An → B



Functional Dependencies
• Why does 


• Every relation fulfilling  fulfills  

• imply


•  with regards to  


• Assume  with regards to , but 
 holds in all relations that also fulfill .


• Create a simple table:


•

𝕊 A1A2…An → B

B ∈ {A1, A2, …, An}+ 𝕊

B ∉ {A1, A2, …, An}+ 𝕊
A1A2…An → B 𝕊

{A1 A2 ... An}+  every thing else 
 0  0      0      0   0  ... 0 
 0  0      0      1   1  ... 1



Functional Dependencies
• Does this instance satisfy  ?


• Assume an FD    in    is violated


• For a violation to occur, the  need to be on the left 
side, i.e. in  and the  on the right 
side of the table.


• But then we did not calculate the closure correctly and 
 should have been in 

𝕊

C1C2…Cr → D 𝕊

Ci
{A1, A2, …, An}+ D

D {A1, A2, …, An}+

{A1 A2 ... An}+  every thing else 
 0  0      0      0   0  ... 0 
 0  0      0      1   1  ... 1



Functional Dependencies
• Does this instance not satisfy  


• Yes!

A1A2…An → B

{A1 A2 ... An}+  every thing else 
 0  0      0      0   0  ... 0 
 0  0      0      1   1  ... 1



Functional Dependencies
• Therefore the assumption is violated and this finishes the 

proof



Functional Dependencies
• With the closure calculation, we can prove


• If in a relation     and 
  then 



• Transitivity

R A1, A2, …, Am → B1, B2, …, Bn
B1, B2, …, Bn → C1, C2, …Ct
A1, A2, …, Am → C1, C2, …Ct



Functional Dependencies
• We sometimes have a choice in the minimal set of FDs 

that describe a relation


• A set of FD is called a basis if all FDs holding in the 
relation can be derived from the basis


• A minimal basis :


• All FDs in  have singleton right sides


• Removing any FD from  is no longer a basis


• If in any FD from  we drop an attribute from the 
right side, then the result is no longer a basis

𝔹

𝔹

𝔹

𝔹



Functional Dependencies
• Example:


• A relation with three attributes such that each attribute 
determines the other attributes


• What are the FDs?


• Find a minimal basis



Functional Dependencies
• Answer: FDs are


•  and all augmentations  
including the trivial ones ,   and




•  plus all augmentation


• ,   plus all augmentations

A → B, A → C A → B, C
A → A, B A → A, C

A → A, B, C

B → A, B → C

C → A C → B



Functional Dependencies
• Answer: To obtain a bases, we can look at all subsets of 

right side singleton 


• 


• For example:


• We try to remove from left


•   follows from 


• Left with 

{A → B, A → C, B → A, B → C, C → A, C → B}

A → B A → C & C → B

{A → C, B → A, B → C, C → A, C → B}



Functional Dependencies
• Left with 


• Now can get rid of 


• Left with 

{A → C, B → A, B → C, C → A, C → B}

B → A

{A → C, B → C, C → A, C → B}



Functional Dependencies
• Another possibility:


• {A → B, B → C, C → A}



Functional Dependencies
• Projecting Functional Dependencies


• Given a relation  with a set of FDs  and a subset  
of attributes of :


• What are the FDs induced in ?


• FDs can only involve attributes from 


• But restricting  to those is not enough

R 𝕊 L
R

πL(R)

L

𝕊



Functional Dependencies
• Algorithm:


• Start out with an empty set  of FDs


• For each set  of attributes  calculate the closure  in 


• If  is a FD calculated this way and , add the FD 
to 


• Modify  to become a minimal basis


• Remove all FDs that follow from others in 


• Test whether an attribute on the left of a FD in  can be 
removed

𝕋

M ⊂ L M+ R

M → X X ∈ L
𝕋

𝕋

𝕋

𝕋



Functional Dependencies
• Example:   with 

 projected on 



• Calculate first closures


• 


• 


• 


•

R(A, B, C, D)
𝕊 = {A → B, B → C, C → D}
L = {A, C, D}

{A}+ = {A, B, C, D}

{B}+ = {B, C, D}

{C}+ = {C, D}

{D}+ = {D}



Functional Dependencies
• We really do not need any more because those with two 

attributes on the left would follow trivially


• Now we add the FDs derived from the closure, if all 
attributes are in 


• 


• This is not a base, because  follows from the 
other ones. 


• The induced FDs have base 

L

𝕋 = {A → C, A → D, C → D}

A → D

𝕋 = {A → C, C → D}



Anomalies
• Take


• Redundancy : The studioName for Star Wars is repeated 
for every star


• This implies:


• Update anomaly : If we update the length of the movie, 
we need to repeat this update operation for every star or 
we get incoherent information


• Delete anomaly : If we delete all stars from an animation 
cartoon, we have no information left on the movie!

movies = (title, year, length, genre, studioName, starName)



Decomposition
• Divide the information over two tables


• becomes

movies = (title, year, length, genre, studioName, starName)

movies1=(title, year, length, genre, studioName) 
movies2=(title, year, starName)



Boyce Codd Normal Form
• Relation in BCNF if and only if:


• Whenever there is a non-trivial FD  then 
 is a superkey

A1…An → B
A1…An



Boyce Codd Normal Form
• Example


•   


• Has FD


• but because of the star attribute,                           is not a key.


• We can decompose:


• Take the left side of the FD


• Calculate its closure


•  


• Decompose into closure and right side


•

movies1(title, year, length, genre, studio, star)

title, year --> studio

title, year

{title, year}+ = {title, year, length, genre, studio}

movies(title, year, length, genre, studio)

starsIn(title, year, star)



Boyce Codd Normal Form
• What is good about BCNF?


• Update anomaly


• Decomposition prevents having to enter the same 
information multiple times


• Delete anomaly


• Can now have movies without stars


• Can we do better?


• Yes, sometimes.  starsIn has still a two-attribute key



Boyce Codd Normal Form
• Any two attribute table   is in BCNF 


• Proof by case distinction:


• Case 1:  


• No nontrivial FDs exists,  is in BCNF


• Case 2: 


•  is the only key and it is on the right of the only non-trivial FD. So 
BNCF.


• Case 3:  , 


• Same as before


• Case 4:  


• Both  are keys.  So, BCNF 

R(A, B)

A ↛ B, B ↛ A

R

A → B, B ↛ A

A

A ↛ B B → B

A → B, B → A

A, B



Boyce Codd Normal Form
• Decomposition:


• Does decomposition loose information or add spurious 
information?


• Does decomposition preserve dependencies


• How do we do decomposition



Boyce Codd Normal Form
• Finding decompositions


• Look for a non-trivial FD. 


• If the right side is not a superkey:


• Expand the right side as much as possible


• 


• Right side are all attributes that are dependent on 
 

A1A2…An → B1…Bm

A1…An



Boyce Codd Normal Form
• Example: 


•  


• with FD 


• Question:  What are possible keys? 

prod(title, year, studio, president, presAddr)

title year -->studio
studio --> president
president --> presAddr



Boyce Codd Normal Form
• Only key is 


• Just look at the closures of all subsets of attributes


• Which FDs violate BCNF?

title, year



Boyce Codd Normal Form
• Two FDs:


•  


•  


• What happens with 

studio --> president

president --> presAddr

studio --> president



Boyce Codd Normal Form
• We calculate the closure of the right side


• 


•  


• This gives a decomposition


•  


• Using projection of FDs, we get


•  


•  


• so second relation is not in BCNF (studio is the only key)

studio —> president

{studio}+ = {president, presAddr} 

(title, year, studio)  (studio, president, presAddr)

title, year —> studio

studio —> president, president —> presAddr



Boyce Codd Normal Form
• Now we decompose the second relation again:


• (studio, president)

(president, presAddr)



Boyce Codd Normal Form
• Decomposition algorithm


• If there is an FD    that violates BCNF


• Calculate 


• Choose  as one relation and   as the 
other


• All attributes in  and all attributes not in  


• Calculate the projected FDs


• Continue

X → Y

X+

X+ X ∪ ∁ (X+)

X X+



Boyce Codd Normal Form
• In class exercise.  


• Find all BNCF violations (including those following from 
the FDs given)


• Decompose the relation, if possible


• R(A, B, C, D); AB → C; C → D; D → A



Answer
• 


• Keys are (A,B), (C,B), (D,B}


•  violates Boyce Codd


• 


•  = 


• We find that  is still a violation is R(A,C,D).


• 


• Complement is 

R(A, B, C, D); AB → C; C → D; D → A

C → D

{C}+ = {C, D, A}

X ∪ ∁ (X+) {C, B}

D → A

{D}+ = {D, A}

{D, C}



Boyce Codd Normal Form
• In class exercise.  


• Find all BNCF violations (including those following from 
the FDs given)


• Decompose the relation, if possible


R(A, B, C, D); AB → C; BC → D; CD → A; AD → B



Boyce Codd Normal Form
• In class exercise.  


• Find all BNCF violations (including those following from 
the FDs given)


• Decompose the relation, if possible


R(A, B, C, D); AB → C; BC → D; CD → A; AD → B



Decomposition
• Recovering data from decomposition


• Assume a relation  with FD , where  is not a key


• Decomposition is then  and 


• Assume  is a tuple. It is projected as  and 


• Thus, .


• Assume  and , i.e. 


• There is a tuple  because  is a projection.


• (Similarly, there is a tuple . )


• Because of the FD  there is only one value for 


• Hence, the tuple must have been 

R(A, B, C) B → C B

R1(A, B) R2(B, C)

t = (a, b, c) t1 = (a, b) t2 = (b, c)

t ∈ R1 ⋈ R2

t1 = (a, b) ∈ R1 t2 = (b, c) ∈ R2 t ∈ R1 ⋈ R2

(a, b, x) ∈ R R1

(a, y, c) ∈ R

B → C x

(a, b, x = c)



Decomposition
• This argument generalizes to sets 


• This means: Boyce Codd decomposition is recoverable


• Since natural joins are associative and commutative, 
the BCNF decomposition algorithm cannot loose 
information

A, B



Decomposition
• Dependency preservation


• Assume a table 


• FDs 


• Keys are:                            and  

bookings(title, theater, city)

theater --> city

title, city --> theater

title, city title, theater



Decomposition
• The existence of the FDs is important


• Assume a similar decomposition of  but 
without the FDs 


• Example instance:


• Split into  and 

R(A, B, C)
B → A, B → C

R1(A, B) R2(B, C)

A B C
1 2 3
4 2 5



Decomposition
• Result of projection


• What is the join of the two tables on the right?

A B C
1 2 3
4 2 5

A B
1 2
4 2

B C
2 3
2 5



Decomposition
• Result


• which introduces spurious records.


• Of course, attribute B was  not a key for the second relation!

A B
1 2
4 2

B C
2 3
2 5

A B C
1 2 3
4 2 3
1 2 5
4 2 5



Dependency Preservation
• Decompose into BCNF


•  


• Must be BCNF, because it only has two attributes


• However, FD title, city —> theater                                                 
cannot be derived

(theater, city) (theater, title)



Decomposition
• Example:


• Violates the FD 


• title, city --> theater

Theater City
AMC Wauwatosa

Marcus 1 Milwaukee
Marcus 2 Wauwatosa

Theater Title
Marcus 2 Doolittle

AMC Doolittle



Chase Test
• We just saw:   with FD  has a lossless 

join into  and  


• Without FD  or , the join is not loss-less


• Question:  Given a set of FDs in  and a set of sets of 
attributes :


• Is decomposition by projection onto the  lossless?


• i.e.: is  ?

R(A, B, C) B → C
R(A, B) R(B, C)

B → C B → A

R
S1, S2, …Sn

Si

πS1
(R) ⋈ πS2

(R) ⋈ … ⋈ πSn
(R) = R



Chase Test
• Two easy remarks:


• Natural join is associative and commutative. The order 
in which we project is not important.


• Certainly R ⊂ πS1
(R) ⋈ πS2

(R) ⋈ … ⋈ πSn
(R)



Chase Test
• Chase Test: 


• Task: Show that given the FDs, we can prove that


• 


• Take a tuple  

• Use a tableau to determine the various versions this 
tuple could appear in the projections

πS1
(R) ⋈ πS2

(R) ⋈ … ⋈ πSn
(R) ⊂ R

t ∈ R



Chase Test
• Tableau has one row for each decomposition


• Put down unsubscripted letters for the attributes in the 
decomposed relationship


• Put down subscripted letters for the attributes not in 
the decomposed relationship


• Subscript is the number of the decomposed 
relationship



Chase Test
• Example:   with projections on 

,  and 


• A generic tuple in  is then represented in 
the decomposition tableau

R(A, B, C, D)
S1 = {A, D} S2 = {A, C} S3 = {B, C, D}

S1 ⋈ S2 ⋈ S3

A B C D
a b1 c1 d
a b2 c d2
a3 b c d



Chase Test
• The first row looks at the projection on A and 

D


• From the projection, we know that a given 
tuple has certain a and d values, but the 
join might give some values for the b and 
c column

A B C D
a b1 c1 d
a b2 c d2
a3 b c d



Chase Test
• Once given a tableau, we use the FDs in order to “chase 

down” identities between the elements in the tableau. 


• We represent them by making subscripts equal or 
dropping them



Chase Test
• Example:


• Assume the following FDs for the example:


• , , 


• Whenever we have tableau entries for 
attributes on the right side, we can use it to 
equalize the entries for attributes on the 
right of an FD

A → B B → C CD → A

A B C D
a b1 c1 d
a b2 c d2
a3 b c d



Chase Test
• Use :


• First two rows, we have unsubscripted a.


• Equalize the B column in these rows

A → B

A B C D
a b1 c1 d
a b2 c d2
a3 b c d

A B C D
a b1 c1 d
a b1 c d2
a3 b c d



Chase Test

• Use FD B → C

A B C D
a b1 c1 d
a b1 c d2
a3 b c d

A B C D
a b1 c d
a b1 c d2
a3 b c d



Chase Test
• Now use CD → A

A B C D
a b1 c d
a b1 c d2
a3 b c d

A B C D
a b1 c d
a b1 c d2
a b c d



Chase Test

• Now we have one row that is equal to 


• This means:  any tuple of the join has to be equal to the 
original tuple

t



Chase Test
• What happens if after applying all FDs, we still are left 

with unsubscripted variables?


• Then this gives us a value in the join that is not in the 
original relation



Chase Test
• Example:


•   with FDs  


• , so Boyce-Codd would split into 


•  and 


• But we decompose into 

R(A, B, C, D) B → AD

{B}+ = {B, A, D}

R(B, C) R(A, B, D)

{A, B}, {B, C}, {C, D}



Chase Test
• Example:


•   with FDs  and decomposition 
into 


• Initial tableau is 

R(A, B, C, D) B → AD
{A, B}, {B, C}, {C, D}

A B C D
c1a b d1

a2 b c d2
a3 b3 c d



Chase Test
• Example:


•   with FDs  and decomposition 
into 


• Initial tableau is


• After applying the FD, we get tableau 

R(A, B, C, D) B → AD
{A, B}, {B, C}, {C, D}

A B C D
c1a b d1

a2 b c d2
a3 b3 c d

A B C D
c1a b d1

a b c d1
a3 b3 c d



Chase Test
• Take this tableau and use it to construct a counter 

example


•  


• Create tuples , ,  in
.


• Fulfills the FD 


• Projections are 

(a, b, c1, d1) (a, b, c, d1) (a3, b3, c, d)
R

B → CD

A B C D
c1a b d1

a b c d1
a3 b3 c d

A B
a b
a3 b3

B C
b c1
b
b3

c
c

C D
c1 d1
c
c

d1
d



Chase Test
• Join these together: 


• Result has two additional rows 


• The decomposition is not loss-less! 

A B
a b
a3 b3

B C
b c1
b
b3

c
c

C D
c1 d1
c
c

d1
d

A B C D
a b c1 d1
a b c d1
a b c d
a3 b3 c d1
a3 b3 c d



Example
• Let  be decomposed into , 

, . Assume FDs , , 
.  Is the decomposition lossless?

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D



Example
• Let  be decomposed into , 

, . Assume FDs , , 
.  Is the decomposition lossless?

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D

A B C D E
a b c d1 e1
a2 b c d e2
a b3 c d3 e



Example
• Let  be decomposed into , 

, . Assume FDs , , 
.  Is the decomposition lossless?


• Use FD 

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D

A → D

A B C D E
a b c d1 e1
a2 b c d e2
a b3 c d1 e

A B C D E
a b c d1 e1
a2 b c d e2
a b3 c d3 e



Example
• Let  be decomposed into , 

, . Assume FDs , , 
.  Is the decomposition lossless?


• Use FD 

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D

CD → E

A B C D E
a b c d1 e
a2 b c d e2
a b3 c d1 e

A B C D E
a b c d1 e1
a2 b c d e2
a b3 c d1 e



Example
• Let  be decomposed into , 

, . Assume FDs , , 
.  Is the decomposition lossless?


• Cannot use FD  , , 

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D

E → D A → D CD → E

A B C D E
a b c d1 e
a2 b c d e2
a b3 c d1 e



B C D
C

A C E

Example
• The tableau gives us tuples that satisfy the FDs


• Make the tableau into tuples


• Look at the projections

A B C D E
a b c d1 e
a2 b c d e2
a b3 c d1 e

b c d1
A B C
a b c
a2 b c
a b3 c

b c d
b3 c d1

a c e
a2
a

c
c

e2
e



Example
• Join them

B C D
C

A C EA B C D E
a b c d1 e
a2 b c d e2
a b3 c d1 e

b c d1
A B C
a b c
a2 b c
a b3 c

b c d
b3 c d1

a c e
a2 c e2

A B C D E
a b c d1

e

e
a b c d e
a2 b c d1 e2
a2 b c d e2
a b3 c d1

e2a b3 c d1



Another Example
•  decomposed into , , , 

, 


• Functional dependencies are , , , 
, and 

R(ABCDE) R1(AD) R2(AB) R3(BE)
R4(CDE) R5(AE)

A → C B → C C → D
DE → C CE → A



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Create a tableau with one row for each decomposition

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Create a tableau with one row for each decomposition


• This represent potential values in the join

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A B C D E

a b1 c1 d e1

a b c2 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c5 d5 e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Start with : Any tuple with the same A-value gets 
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c2 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c5 d5 e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Start with : Any tuple with the same A-value gets 
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c2 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c5 d5 e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Start with : Any tuple with the same A-value gets 
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c2 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c5 d5 e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Start with : Any tuple with the same A-value gets 
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c1 d5 e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Start with : Any tuple with the same A-value gets 
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c1 d5 e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply : Any tuple with the same B-value gets 
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

B → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c1 d5 e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply : Any tuple with the same B-value gets 
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

B → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c1 d5 e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply : Any tuple with the same B-value gets 
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

B → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c1 d3 e

a4 b4 c d e

a b5 c1 d5 e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply :

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

C → D

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c1 d3 e

a4 b4 c d e

a b5 c1 d5 e



Another Example
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• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply :
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A → C B → C C → D DE → C CE → A

C → D

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c1 d3 e

a4 b4 c d e

a b5 c1 d5 e
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• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply :

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

C → D

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c1 d e

a4 b4 c d e

a b5 c1 d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply :

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

DE → C

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c1 d e

a4 b4 c d e

a b5 c1 d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply : Unify the C-value if the D and E value are 
same

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

DE → C

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c1 d e

a4 b4 c d e

a b5 c1 d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply : Unify the C-value if the D and E value are 
same

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

DE → C

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply : Unify the C-value if the D and E value are 
same

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

DE → C

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply 

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply 

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply 

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply 

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Apply 

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• While we can continue, we do not have to:

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e



Another Example
•  decomposed into , , , , 


• Functional dependencies are , , , , and 


• Now chase using functional dependencies


• Middle row has no indexed values:

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e



Another Example
• This shows that the decomposition has a lossless join

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e



Third Normal Form
• Decomposition


• Avoid update and delete anomalies


• Guarantee lossless joins


• Decomposition does not generate spurious data


• Want to check functional dependencies in the derived 
tables



Third Normal Form
• Sometimes, checking FDs is impossible


• Example: R(street, city, zip)


• street, city —> zip 

• zip —> city 

• Bring into BCNF: {street, city} and {street, 
zip} are keys, zip —> city violates BCNF 

• Decompose into R1(zip, city), R2(zip, 
street) 

• But now we cannot check street, city —> zip



Third Normal Form
• Example:


• looks fine

street zip

123 Wisconsin Avenue 53230

123 Wisconsin Avenue 53231

city zip

Milwaukee 53230

Milwaukee 53231



Third Normal Form
• But join gives:


• which violates a FD

street city zip

123 Wisconsin Avenue Milwaukee 53230

123 Wisconsin Avenue Milwaukee 53231



Third Normal Form
• So we should not do this.


• “Elegant” solution: define the problem away


• The original table needs to be “normal”


• A relation is in third normal form iff


• For every non-trivial FD 


•  is a superkey


•  is prime (member of at least one key

X → A

X

A



Third Normal Form
• A relation  is in third normal form 


• If  is a non-trivial FD, then 


• either  is a superkey


• or those of  not in  
are each member of some key (not necessarily the 
same)


• Attributes that are part of some key are called prime

R

A1A2…An → B1B2…Bm

{A1, A2, …, An}

{B1, B2, …, Bm} {A1, A2, …, An}



Third Normal Form
• Example:


•  


• is in third normal form


• city is part of a key

bookings(title, theater, city)

theater --> city

title, city --> theater



Third Normal Form
• Example:


•  


• is in third normal form


• zip is prime

addresses(city, street, zip)

zip --> city

city, street --> zip



Third Normal Form
• Creation of 3NF Schemas


• Want to decompose a relation  into a set of relations 
such that


• All relations in the set are in 3NF


• The decomposition has a lossless join


• The decomposition preserves dependencies

R



Third Normal Form
• Synthesis Algorithm


• Given a relation  and a set  of FDs


• Find a minimal base  for  


• For all FD :  use  as a schema


• If none of the relation schemas from previous step 
are a superkey for , add another relation whose 
schema is a key for R

R 𝔽

𝔾 𝔽

X → A ∈ 𝔾 XA

R



Third Normal Form
• Example:


•  with FDs , , R(A, B, C, D, E) AB → C C → B A → D



Third Normal Form
• Example:


• The FDs are their own base:


• Show: None of , ,  follows 
from the other two


• Show:  Cannot drop an attribute from a right side 

AB → C C → B A → D



Third Normal Form
• Example:  with FDs , , 




• This gives relations


• , , 


• Keys of  are  and 


• Need to add one of them


• , , , 

R(A, B, C, D, E) AB → C C → B
A → D

S1(A, B, C) S2(B, C) S3(A, D)

R A, B, E A, C, E

S1(A, B, C) S2(B, C) S3(A, D) S4(A, C, E)



Third Normal Form
• Why does this work


• Lossless join:


• We use the “Chase”


• There is one subset of attributes in the 
decomposition that is a superkey .


• The closure of  is all the attributes.


• We start with a tableau

𝕂

𝕂



Third Normal Form
• Lossless join -- Chase


• Use the FDs used in calculating the closure of .


• We can assume that the FDs are in the base


• Let the first FD be . 


• Tableau:


• The application of the FD sets  b1 to  b

𝕂

𝕏 ⊃ 𝔸 → B

             rest of attributes 
r,s,t, e, f,  b1      ** 
r,s t1 e1 f1  b       **

𝔸 𝕏\𝔸 B
row  
row FD

𝕂



Third Normal Form
• Lossless join -- Chase


• We continue the process.


• Next FD might use column  or not, but because of 
it, we loose the subscript in the column 
corresponding to the right side


• Eventually, we have removed all subscripts in the first 
row


• Therefore, the decomposition is loss-less

B



Third Normal Form
• Dependency Preservation


• Any FD is the consequence of the FDs in the base


• Any FD in the base is represented by a relation in the 
decomposition


• Therefore, we can first check those and as a 
consequence get all the FDs



Third Normal Form
• Is the decomposition in third normal form


• If we add a relation that corresponds to a key, then this 
relation is by definition in third normal form


• If we add a relation that corresponds to an FD in the 
basis:


• Can show: If the relation is not in 3NF, then the basis 
is not minimal



Multivalued Dependencies
• First Normal Form:  All values in a relation are atomic


• This is removed by object-relational databases


• If the value of an attribute is a set, we represent it by 
using many relations

A   B   C 
1   2  {3,4} 
4   5  {3,4}

A  B  C 
1  2  3 
1  2  4 
4  5  3 
4  5  4



Multivalued Dependencies
• A more practical example


• Relation  course(number, book, lecturer) 

• In this department, the books recommended and the 
lecturers are independent.


• calc 1 | Ross | Krenz 
calc 1 | Lang | Krenz 
calc 1 | Ross | Sanders 
calc 1 | Lang | Sanders 
calc 2 | Ash  | Gillen 
calc 2 | Ash  | Engbers 
calc 1 | Ross | Schwarz 
calc 1 | Lang | Schwarz



Multivalued Dependencies
• The same list can be expressed using sets more simply

calc 1 | Ross | Krenz 
calc 1 | Lang | Krenz 
calc 1 | Ross | Sanders 
calc 1 | Lang | Sanders 
calc 2 | Ash  | Gillen 
calc 2 | Ash  | Engbers 
calc 1 | Ross | Schwarz 
calc 1 | Lang | Schwarz

calc1 | {Ross, Lang} | {Krenz, Sanders, Schwarz} 
calc2 | {Ash}        | {Gillen, Engbers}



Multivalued Dependencies
• It would be an error to add a single tuple 


• calc 1 | Burlow | Krenz 

• to the relation 


• indicating that an additional book is now recommended


• Instead, need to add:


• calc 1 | Burlow | Sanders 

• calc 1 | Burlow | Schwarz 

• as well 



Multivalued Dependencies
• This gives rise to the definition of a multivalued 

dependency


• Unlike before, we now demand that additional tuples 
exist in the relation.



Multivalued Dependencies
• Formally:  


• Whenever 


• two tuples agree on its values in 


• the tuples have values  and  in 


• the tuples have values  and  in the other 
attributes


• then the tuples  and 
 also exist

A1, A2, …, An ↠ B1, …Bm

A1, A2, …, An

b1…bm b′ 1…b′ m B1, B2, …, Bm

x1…xr x′ 1…x′ r

a1…anb′ 1…b′ mx1…xr
a′ 1…a′ nb1…bmx′ 1…x′ r



Multivalued Dependencies
• For each pair of tuples t and u of a relation R that agree 

on all attributes  : 

• We can find another tuple v such that v agrees :


• With both t and u on 


• With t on 


• With u on all attributes that are not among the As 
and Bs

A1, A2, …, An

A1, A2, …, An

B1, B2, …, Bm



Multivalued Dependencies
• Example


• Relation courses


• has FD  and  course ↠ book course ↠ lecturer

calc 1 | Ross | Krenz 
calc 1 | Lang | Krenz 
calc 1 | Ross | Sanders 
calc 1 | Lang | Sanders 
calc 2 | Ash  | Gillen 
calc 2 | Ash  | Engbers 
calc 1 | Ross | Schwarz 
calc 1 | Lang | Schwarz



Multivalued Dependencies
• Example  stars(name, address, movie) 

• A star can have several address and can be in several 
movies


• But: for each movie, all addresses of the star need to 
appear


• But: for each address, all movies need to appear



Multivalued Dependencies
• Trivial MVD


• If  then


•
{B1, …, Bm} ⊂ {A1, …, An}

A1…An ↠ B1…Bm



Multivalued Dependencies
• Transitive MVDs


•  and  implies 



• Provided that we remove any C-attributes that are also 
A-attributes

A1…An ↠ B1…Bm B1…Bm ↠ C1…Ck
A1…An ↠ C1…Ck



Multivalued Dependencies
• Splitting is NOT true


• stars(name, street, city, title, year) 

• has MVD


• name  street, city 

• However, name  street is not true. 

• John Wayne, 123 Elm Street, Malibu, Hatari, 1962

• John Wayne, 456 Overland, Culver City, Hatari, 1962 

• John Wayne, 123 Elm Street, Malibu, Shootist, 1976 

• John Wayne, 456 Overland, Culver City, Shootist, 1976 

• DOES NOT HAVE

• John Wayne, 123 Elm Street, Culver City, Hatari, 1962 

↠

↠



Multivalued Dependencies
• Promotion


• Any FD is also an MVD



Multivalued Dependencies
• Complementation


• If  and  are the attributes 
not in the As and Bs, then 

A1…An ↠ B1…Bm C1…Ck
A1…An ↠ C1…Ck



Fourth Normal Form
• A relation is in fourth normal form if whenever 

 is a non-trivial MVD


• Then  is a super-key

A1…An ↠ B1…Bm

A1…An



Normal Forms
• We have 4NF  BCNF  3NF


•

⇒ ⇒

3NF BCNF 4NF

eliminate redundancies 
due to FDs no yes yes

eliminates redundancies 
due to MVDs no no yes

preserves FDs yes no no

preserves MVDs no no no

lossless joins yes yes yes


