
Design Theory for
Relational Databases

Thomas Schwarz, SJ

Contents
• There are many ways a database scheme can be

constructed

• A poorly designed scheme:

• Has problems with checking constraints

• Has problems with data coherence

• E.g. two different spellings of the same person's
first name

• Has problems with performance

Contents
• Design theory helps to design efficient schemes

• Functional dependencies

• Used in the definition of a key

• Used for flagging potentially bad records

• Normal forms

• Get rid of anomalies

• Get rid of redundant storage of data

• Expand to multivalued dependencies

Functional Dependencies
• About the nature of data

• Think about it as the potential contents of a table

• Instead of the actual contents

• Example:

• Students can have a double major

• But an actual set of students might not include a
student with double major

Functional Dependencies
• A form of constraint for a relation

• Functional Dependency (FD) for table

• FD

• with

• If a tuple's values agree for attributes

• Then they agree for attributes

R(𝕏)

A1, A2, …An ⟶ B1, B2, …, Bm

A1, …, An, B1, …, Bm ∈ 𝕏

A1, …, An

B1, B2, …, Bm

Functional Dependencies
• Only consider FD with one attribute on the right

• Because FD is
equivalent to all of:

•

•

•

•

A1, A2, …An ⟶ B1, B2, …, Bm

A1, A2, …An ⟶ B1

A1, A2, …An ⟶ B2

⋮

A1, A2, …An ⟶ Bm

Functional Dependencies
• Example:

• Movies1(title, year, length, genre,
studioName, starName)

• Find all FDs

Functional Dependencies
• title, year —> length

• title, year —> genre

• title, year —> studio

• However:

• title, year starName

• is not an FD

↛

Keys
• A superkey is a set of attributes in a table that

determines all attributes

•

• is a superkey if

•

R(A1, A2, …An)

Ai1, Ai2, …Aim

∀j : Ai1, Ai2, …Aim ⟶ Aj

Keys
• A key is a minimal superkey with respect to set inclusion

• I.e. A superkey so that no attribute in it can be reomved

• If a key consists of a single attribute, then we call the
attribute the key instead of the set with only element this
attribute

Functional Dependencies
• Quiz: Given and FDs and ,

• Does this mean ?

R(A, B, C) A → B B → C

A → C

Functional Dependencies
• Answer: Yes.

• Show that all tuples that agree on attribute A also agree
on attribute C

• Called transitivity

Functional Dependencies
• A set of FDs follows from a set of FDs if every relation

instance satisfying all FDs in T also satisfies all FDs in S

• Sets of FDs are equivalent if the set of relation instances
satisfying one is equal to the set of relation instances
satisfying the other one.

S T

Functional Dependencies
• The splitting rule:

• is equivalent to

•

•

•

•

A1, A2, …An ⟶ B1, B2, …, Bm

A1, A2, …An ⟶ B1

A1, A2, …An ⟶ B2

⋮

A1, A2, …An ⟶ Bm

Functional Dependencies
• The combining rule:

• The set of FDs

•

•

•

•

• is equivalent to

A1, A2, …An ⟶ B1

A1, A2, …An ⟶ B2

⋮

A1, A2, …An ⟶ Bm

A1, A2, …An ⟶ B1, B2, …, Bm

Functional Dependencies
• Quiz: Does imply

?
A1, A2, …, An ⟶ B

X, A1, A2, …, An ⟶ B

Functional Dependencies
• Quiz: Does imply

?

• Yes:

• Called augmentation

A1, A2, …, An ⟶ B
X, A1, A2, …, An ⟶ B

Functional Dependencies
• Trivial FDs

• (Reflexivity)

• (Reflexivity & Augmentation)

• Trivial Dependency Rule:

• is equivalent to

•

• where the are those of the that are not among
the

Ai → Ai

A, B → A

A1A2…An → B1B2…Bm

A1A2…An → C1C2…Cr

Ci Bi
Ai

Functional Dependencies
• Closure:

• Let be a set of functional dependencies

• Let be a set of attributes

• The closure of is the set of attributes such
that every relation that satisfies all the FDs in also
satisfies .

𝕊

𝔸 = {A1, A2, …, An}

𝔸 𝔸+ B
𝕊

A1, A2, …, An → B

Functional Dependencies
• Closure calculation algorithm

• Input: a set of attributes and a set of functional dependencies .

• Output:

1. Split all FDs in so that there is only a single attribute on the right

2.Set to be .

3.Repeatedly search for some FD such that
 and . Then add to

4.Stop when the search fails and output .

𝔸 𝕊

𝔸+

𝕊

𝕏 𝔸

B1, B2, …, Bm → C ∈ 𝕊
B1, B2, …, Bm ∈ 𝔸 C ∉ 𝔸 C 𝕏

𝕏 = 𝔸+

Functional Dependencies
• Consider the relation scheme R = {E, F, G, H, I, J, K, L, M}

and the set of functional dependencies {{E, F} -> {G}, {F}
-> {I, J}, {E, H} -> {K, L}, K -> {M}, L -> {N} on R. What is
the key for R?:

• {E}

• {E,F}

• {E,F,H}

• {E,F,H,K,L}

• Hint: calculate the closure of all possible answers

Functional Dependencies
• First, normalize {{E, F} -> {G}, {F} -> {I, J}, {E, H} -> {K, L},

K -> {M}, L -> {N}

•

• Start with .

• There is no FD that has only E on the left side

•

{{E, F} → G, {F} → I, {F} → J, {E, H} → K, {E, H} → L, K → M, L → N}

{E}

{E}+ = {E}

Functional Dependencies
•

• Now try

• We can add G to .

• We can add I to .

• We can add J to .

• Then we are stuck:

{{E, F} → G, {F} → I, {F} → J, {E, H} → K, {E, H} → L, K → M, L → N}

{E, F} = 𝕏

𝕏

𝕏

𝕏

{E, F}+ = {E, F, G, I, J}

Functional Dependencies
•

• Now try

• We can add G to because of (1).

• We can add I to because of (2):

• We can add J to because of (3):

• (4) gives

• (5) gives

• (6) gives

• (7) gives

• Therefore contains all the attributes.

• Since , is a minimal candidate key and therefore a key.

{{E, F} → G, {F} → I, {F} → J, {E, H} → K, {E, H} → L, K → M, L → N}

{E, F, H} = 𝕏

𝕏

𝕏 𝕏 = {E, F, G, H, I}

𝕏 𝕏 = {E, F, G, H, I, J}

𝕏 = {E, F, G, H, I, J, K}

𝕏 = {E, F, G, H, I, J, K, L}

𝕏 = {E, F, G, H, I, J, K, L, M}

𝕏 = {E, F, G, H, I, J, K, L, M, N}

{E, F, H}+

{F, H}+ = {F, H, I, J} {E, F, H}

Functional Dependencies
• Why does closure work

• Need to show equivalency of :

• with regards to

• Every relation fulfilling fulfills

B ∈ {A1, A2, …, An}+ 𝕊

𝕊 A1A2…An → B

Functional Dependencies
• Why does

• with regards to

• imply

• Every relation fulfilling fulfills

• Look at the first time adding an attribute to leads to an FD that
is not true.

• But was added using a FD

• Because this is the first time and follow from the in all
relations,

• Thus, a tuple equal in is also equal in all and hence equal
in .

• Therefore has to be true and we have a contradiction

B ∈ {A1, A2, …, An}+ 𝕊

𝕊 A1A2…An → B

𝕏 A1A2…An → B

B X1, X2, …Xm → B
X1, X2, …Xm A1A2…An

A1A2…An → X1, …Xm

A1A2…An X1, …Xm
B

A1A2…An → B

Functional Dependencies
• Why does

• Every relation fulfilling fulfills

• imply

• with regards to

• Assume with regards to , but
 holds in all relations that also fulfill .

• Create a simple table:

•

𝕊 A1A2…An → B

B ∈ {A1, A2, …, An}+ 𝕊

B ∉ {A1, A2, …, An}+ 𝕊
A1A2…An → B 𝕊

{A1 A2 ... An}+ every thing else
 0 0 0 0 0 ... 0
 0 0 0 1 1 ... 1

Functional Dependencies
• Does this instance satisfy ?

• Assume an FD in is violated

• For a violation to occur, the need to be on the left
side, i.e. in and the on the right
side of the table.

• But then we did not calculate the closure correctly and
 should have been in

𝕊

C1C2…Cr → D 𝕊

Ci
{A1, A2, …, An}+ D

D {A1, A2, …, An}+

{A1 A2 ... An}+ every thing else
 0 0 0 0 0 ... 0
 0 0 0 1 1 ... 1

Functional Dependencies
• Does this instance not satisfy

• Yes!

A1A2…An → B

{A1 A2 ... An}+ every thing else
 0 0 0 0 0 ... 0
 0 0 0 1 1 ... 1

Functional Dependencies
• Therefore the assumption is violated and this finishes the

proof

Functional Dependencies
• With the closure calculation, we can prove

• If in a relation and
 then

• Transitivity

R A1, A2, …, Am → B1, B2, …, Bn
B1, B2, …, Bn → C1, C2, …Ct
A1, A2, …, Am → C1, C2, …Ct

Functional Dependencies
• We sometimes have a choice in the minimal set of FDs

that describe a relation

• A set of FD is called a basis if all FDs holding in the
relation can be derived from the basis

• A minimal basis :

• All FDs in have singleton right sides

• Removing any FD from is no longer a basis

• If in any FD from we drop an attribute from the
right side, then the result is no longer a basis

𝔹

𝔹

𝔹

𝔹

Functional Dependencies
• Example:

• A relation with three attributes such that each attribute
determines the other attributes

• What are the FDs?

• Find a minimal basis

Functional Dependencies
• Answer: FDs are

• and all augmentations
including the trivial ones , and

• plus all augmentation

• , plus all augmentations

A → B, A → C A → B, C
A → A, B A → A, C

A → A, B, C

B → A, B → C

C → A C → B

Functional Dependencies
• Answer: To obtain a bases, we can look at all subsets of

right side singleton

•

• For example:

• We try to remove from left

• follows from

• Left with

{A → B, A → C, B → A, B → C, C → A, C → B}

A → B A → C & C → B

{A → C, B → A, B → C, C → A, C → B}

Functional Dependencies
• Left with

• Now can get rid of

• Left with

{A → C, B → A, B → C, C → A, C → B}

B → A

{A → C, B → C, C → A, C → B}

Functional Dependencies
• Another possibility:

• {A → B, B → C, C → A}

Functional Dependencies
• Projecting Functional Dependencies

• Given a relation with a set of FDs and a subset
of attributes of :

• What are the FDs induced in ?

• FDs can only involve attributes from

• But restricting to those is not enough

R 𝕊 L
R

πL(R)

L

𝕊

Functional Dependencies
• Algorithm:

• Start out with an empty set of FDs

• For each set of attributes calculate the closure in

• If is a FD calculated this way and , add the FD
to

• Modify to become a minimal basis

• Remove all FDs that follow from others in

• Test whether an attribute on the left of a FD in can be
removed

𝕋

M ⊂ L M+ R

M → X X ∈ L
𝕋

𝕋

𝕋

𝕋

Functional Dependencies
• Example: with

 projected on

• Calculate first closures

•

•

•

•

R(A, B, C, D)
𝕊 = {A → B, B → C, C → D}
L = {A, C, D}

{A}+ = {A, B, C, D}

{B}+ = {B, C, D}

{C}+ = {C, D}

{D}+ = {D}

Functional Dependencies
• We really do not need any more because those with two

attributes on the left would follow trivially

• Now we add the FDs derived from the closure, if all
attributes are in

•

• This is not a base, because follows from the
other ones.

• The induced FDs have base

L

𝕋 = {A → C, A → D, C → D}

A → D

𝕋 = {A → C, C → D}

Anomalies
• Take

• Redundancy : The studioName for Star Wars is repeated
for every star

• This implies:

• Update anomaly : If we update the length of the movie,
we need to repeat this update operation for every star or
we get incoherent information

• Delete anomaly : If we delete all stars from an animation
cartoon, we have no information left on the movie!

movies = (title, year, length, genre, studioName, starName)

Decomposition
• Divide the information over two tables

• becomes

movies = (title, year, length, genre, studioName, starName)

movies1=(title, year, length, genre, studioName)
movies2=(title, year, starName)

Boyce Codd Normal Form
• Relation in BCNF if and only if:

• Whenever there is a non-trivial FD then
 is a superkey

A1…An → B
A1…An

Boyce Codd Normal Form
• Example

•

• Has FD

• but because of the star attribute, is not a key.

• We can decompose:

• Take the left side of the FD

• Calculate its closure

•

• Decompose into closure and right side

•

movies1(title, year, length, genre, studio, star)

title, year --> studio

title, year

{title, year}+ = {title, year, length, genre, studio}

movies(title, year, length, genre, studio)

starsIn(title, year, star)

Boyce Codd Normal Form
• What is good about BCNF?

• Update anomaly

• Decomposition prevents having to enter the same
information multiple times

• Delete anomaly

• Can now have movies without stars

• Can we do better?

• Yes, sometimes. starsIn has still a two-attribute key

Boyce Codd Normal Form
• Any two attribute table is in BCNF

• Proof by case distinction:

• Case 1:

• No nontrivial FDs exists, is in BCNF

• Case 2:

• is the only key and it is on the right of the only non-trivial FD. So
BNCF.

• Case 3: ,

• Same as before

• Case 4:

• Both are keys. So, BCNF

R(A, B)

A ↛ B, B ↛ A

R

A → B, B ↛ A

A

A ↛ B B → B

A → B, B → A

A, B

Boyce Codd Normal Form
• Decomposition:

• Does decomposition loose information or add spurious
information?

• Does decomposition preserve dependencies

• How do we do decomposition

Boyce Codd Normal Form
• Finding decompositions

• Look for a non-trivial FD.

• If the right side is not a superkey:

• Expand the right side as much as possible

•

• Right side are all attributes that are dependent on
 

A1A2…An → B1…Bm

A1…An

Boyce Codd Normal Form
• Example:

•

• with FD

• Question: What are possible keys?

prod(title, year, studio, president, presAddr)

title year -->studio
studio --> president
president --> presAddr

Boyce Codd Normal Form
• Only key is

• Just look at the closures of all subsets of attributes

• Which FDs violate BCNF?

title, year

Boyce Codd Normal Form
• Two FDs:

•

•

• What happens with

studio --> president

president --> presAddr

studio --> president

Boyce Codd Normal Form
• We calculate the closure of the right side

•

•

• This gives a decomposition

•

• Using projection of FDs, we get

•

•

• so second relation is not in BCNF (studio is the only key)

studio —> president

{studio}+ = {president, presAddr}

(title, year, studio) (studio, president, presAddr)

title, year —> studio

studio —> president, president —> presAddr

Boyce Codd Normal Form
• Now we decompose the second relation again:

• (studio, president)

(president, presAddr)

Boyce Codd Normal Form
• Decomposition algorithm

• If there is an FD that violates BCNF

• Calculate

• Choose as one relation and as the
other

• All attributes in and all attributes not in

• Calculate the projected FDs

• Continue

X → Y

X+

X+ X ∪ ∁ (X+)

X X+

Boyce Codd Normal Form
• In class exercise.

• Find all BNCF violations (including those following from
the FDs given)

• Decompose the relation, if possible

• R(A, B, C, D); AB → C; C → D; D → A

Answer
•

• Keys are (A,B), (C,B), (D,B}

• violates Boyce Codd

•

• =

• We find that is still a violation is R(A,C,D).

•

• Complement is

R(A, B, C, D); AB → C; C → D; D → A

C → D

{C}+ = {C, D, A}

X ∪ ∁ (X+) {C, B}

D → A

{D}+ = {D, A}

{D, C}

Boyce Codd Normal Form
• In class exercise.

• Find all BNCF violations (including those following from
the FDs given)

• Decompose the relation, if possible

R(A, B, C, D); AB → C; BC → D; CD → A; AD → B

Boyce Codd Normal Form
• In class exercise.

• Find all BNCF violations (including those following from
the FDs given)

• Decompose the relation, if possible

R(A, B, C, D); AB → C; BC → D; CD → A; AD → B

Decomposition
• Recovering data from decomposition

• Assume a relation with FD , where is not a key

• Decomposition is then and

• Assume is a tuple. It is projected as and

• Thus, .

• Assume and , i.e.

• There is a tuple because is a projection.

• (Similarly, there is a tuple .)

• Because of the FD there is only one value for

• Hence, the tuple must have been

R(A, B, C) B → C B

R1(A, B) R2(B, C)

t = (a, b, c) t1 = (a, b) t2 = (b, c)

t ∈ R1 ⋈ R2

t1 = (a, b) ∈ R1 t2 = (b, c) ∈ R2 t ∈ R1 ⋈ R2

(a, b, x) ∈ R R1

(a, y, c) ∈ R

B → C x

(a, b, x = c)

Decomposition
• This argument generalizes to sets

• This means: Boyce Codd decomposition is recoverable

• Since natural joins are associative and commutative,
the BCNF decomposition algorithm cannot loose
information

A, B

Decomposition
• Dependency preservation

• Assume a table

• FDs

• Keys are: and

bookings(title, theater, city)

theater --> city

title, city --> theater

title, city title, theater

Decomposition
• The existence of the FDs is important

• Assume a similar decomposition of but
without the FDs

• Example instance:

• Split into and

R(A, B, C)
B → A, B → C

R1(A, B) R2(B, C)

A B C
1 2 3
4 2 5

Decomposition
• Result of projection

• What is the join of the two tables on the right?

A B C
1 2 3
4 2 5

A B
1 2
4 2

B C
2 3
2 5

Decomposition
• Result

• which introduces spurious records.

• Of course, attribute B was not a key for the second relation!

A B
1 2
4 2

B C
2 3
2 5

A B C
1 2 3
4 2 3
1 2 5
4 2 5

Dependency Preservation
• Decompose into BCNF

•

• Must be BCNF, because it only has two attributes

• However, FD title, city —> theater
cannot be derived

(theater, city) (theater, title)

Decomposition
• Example:

• Violates the FD

• title, city --> theater

Theater City
AMC Wauwatosa

Marcus 1 Milwaukee
Marcus 2 Wauwatosa

Theater Title
Marcus 2 Doolittle

AMC Doolittle

Chase Test
• We just saw: with FD has a lossless

join into and

• Without FD or , the join is not loss-less

• Question: Given a set of FDs in and a set of sets of
attributes :

• Is decomposition by projection onto the lossless?

• i.e.: is ?

R(A, B, C) B → C
R(A, B) R(B, C)

B → C B → A

R
S1, S2, …Sn

Si

πS1
(R) ⋈ πS2

(R) ⋈ … ⋈ πSn
(R) = R

Chase Test
• Two easy remarks:

• Natural join is associative and commutative. The order
in which we project is not important.

• Certainly R ⊂ πS1
(R) ⋈ πS2

(R) ⋈ … ⋈ πSn
(R)

Chase Test
• Chase Test:

• Task: Show that given the FDs, we can prove that

•

• Take a tuple

• Use a tableau to determine the various versions this
tuple could appear in the projections

πS1
(R) ⋈ πS2

(R) ⋈ … ⋈ πSn
(R) ⊂ R

t ∈ R

Chase Test
• Tableau has one row for each decomposition

• Put down unsubscripted letters for the attributes in the
decomposed relationship

• Put down subscripted letters for the attributes not in
the decomposed relationship

• Subscript is the number of the decomposed
relationship

Chase Test
• Example: with projections on

, and

• A generic tuple in is then represented in
the decomposition tableau

R(A, B, C, D)
S1 = {A, D} S2 = {A, C} S3 = {B, C, D}

S1 ⋈ S2 ⋈ S3

A B C D
a b1 c1 d
a b2 c d2
a3 b c d

Chase Test
• The first row looks at the projection on A and

D

• From the projection, we know that a given
tuple has certain a and d values, but the
join might give some values for the b and
c column

A B C D
a b1 c1 d
a b2 c d2
a3 b c d

Chase Test
• Once given a tableau, we use the FDs in order to “chase

down” identities between the elements in the tableau.

• We represent them by making subscripts equal or
dropping them

Chase Test
• Example:

• Assume the following FDs for the example:

• , ,

• Whenever we have tableau entries for
attributes on the right side, we can use it to
equalize the entries for attributes on the
right of an FD

A → B B → C CD → A

A B C D
a b1 c1 d
a b2 c d2
a3 b c d

Chase Test
• Use :

• First two rows, we have unsubscripted a.

• Equalize the B column in these rows

A → B

A B C D
a b1 c1 d
a b2 c d2
a3 b c d

A B C D
a b1 c1 d
a b1 c d2
a3 b c d

Chase Test

• Use FD B → C

A B C D
a b1 c1 d
a b1 c d2
a3 b c d

A B C D
a b1 c d
a b1 c d2
a3 b c d

Chase Test
• Now use CD → A

A B C D
a b1 c d
a b1 c d2
a3 b c d

A B C D
a b1 c d
a b1 c d2
a b c d

Chase Test

• Now we have one row that is equal to

• This means: any tuple of the join has to be equal to the
original tuple

t

Chase Test
• What happens if after applying all FDs, we still are left

with unsubscripted variables?

• Then this gives us a value in the join that is not in the
original relation

Chase Test
• Example:

• with FDs

• , so Boyce-Codd would split into

• and

• But we decompose into

R(A, B, C, D) B → AD

{B}+ = {B, A, D}

R(B, C) R(A, B, D)

{A, B}, {B, C}, {C, D}

Chase Test
• Example:

• with FDs and decomposition
into

• Initial tableau is

R(A, B, C, D) B → AD
{A, B}, {B, C}, {C, D}

A B C D
c1a b d1

a2 b c d2
a3 b3 c d

Chase Test
• Example:

• with FDs and decomposition
into

• Initial tableau is

• After applying the FD, we get tableau

R(A, B, C, D) B → AD
{A, B}, {B, C}, {C, D}

A B C D
c1a b d1

a2 b c d2
a3 b3 c d

A B C D
c1a b d1

a b c d1
a3 b3 c d

Chase Test
• Take this tableau and use it to construct a counter

example

•

• Create tuples , , in
.

• Fulfills the FD

• Projections are

(a, b, c1, d1) (a, b, c, d1) (a3, b3, c, d)
R

B → CD

A B C D
c1a b d1

a b c d1
a3 b3 c d

A B
a b
a3 b3

B C
b c1
b
b3

c
c

C D
c1 d1
c
c

d1
d

Chase Test
• Join these together:

• Result has two additional rows

• The decomposition is not loss-less!

A B
a b
a3 b3

B C
b c1
b
b3

c
c

C D
c1 d1
c
c

d1
d

A B C D
a b c1 d1
a b c d1
a b c d
a3 b3 c d1
a3 b3 c d

Example
• Let be decomposed into ,

, . Assume FDs , ,
. Is the decomposition lossless?

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D

Example
• Let be decomposed into ,

, . Assume FDs , ,
. Is the decomposition lossless?

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D

A B C D E
a b c d1 e1
a2 b c d e2
a b3 c d3 e

Example
• Let be decomposed into ,

, . Assume FDs , ,
. Is the decomposition lossless?

• Use FD

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D

A → D

A B C D E
a b c d1 e1
a2 b c d e2
a b3 c d1 e

A B C D E
a b c d1 e1
a2 b c d e2
a b3 c d3 e

Example
• Let be decomposed into ,

, . Assume FDs , ,
. Is the decomposition lossless?

• Use FD

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D

CD → E

A B C D E
a b c d1 e
a2 b c d e2
a b3 c d1 e

A B C D E
a b c d1 e1
a2 b c d e2
a b3 c d1 e

Example
• Let be decomposed into ,

, . Assume FDs , ,
. Is the decomposition lossless?

• Cannot use FD , ,

R(A, B, C, D, E) {A, B, C}
{B, C, D} {A, C, E} A → D CD → E
E → D

E → D A → D CD → E

A B C D E
a b c d1 e
a2 b c d e2
a b3 c d1 e

B C D
C

A C E

Example
• The tableau gives us tuples that satisfy the FDs

• Make the tableau into tuples

• Look at the projections

A B C D E
a b c d1 e
a2 b c d e2
a b3 c d1 e

b c d1
A B C
a b c
a2 b c
a b3 c

b c d
b3 c d1

a c e
a2
a

c
c

e2
e

Example
• Join them

B C D
C

A C EA B C D E
a b c d1 e
a2 b c d e2
a b3 c d1 e

b c d1
A B C
a b c
a2 b c
a b3 c

b c d
b3 c d1

a c e
a2 c e2

A B C D E
a b c d1

e

e
a b c d e
a2 b c d1 e2
a2 b c d e2
a b3 c d1

e2a b3 c d1

Another Example
• decomposed into , , ,

,

• Functional dependencies are , , ,
, and

R(ABCDE) R1(AD) R2(AB) R3(BE)
R4(CDE) R5(AE)

A → C B → C C → D
DE → C CE → A

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Create a tableau with one row for each decomposition

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Create a tableau with one row for each decomposition

• This represent potential values in the join

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A B C D E

a b1 c1 d e1

a b c2 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c5 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Start with : Any tuple with the same A-value gets
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c2 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c5 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Start with : Any tuple with the same A-value gets
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c2 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c5 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Start with : Any tuple with the same A-value gets
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c2 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c5 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Start with : Any tuple with the same A-value gets
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c1 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Start with : Any tuple with the same A-value gets
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)

A → C B → C C → D DE → C CE → A

A → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c1 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply : Any tuple with the same B-value gets
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

B → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c1 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply : Any tuple with the same B-value gets
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

B → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c3 d3 e

a4 b4 c d e

a b5 c1 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply : Any tuple with the same B-value gets
simplified

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

B → C

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c1 d3 e

a4 b4 c d e

a b5 c1 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply :

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

C → D

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c1 d3 e

a4 b4 c d e

a b5 c1 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply :

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

C → D

A B C D E

a b1 c1 d e1

a b c1 d2 e2

a3 b c1 d3 e

a4 b4 c d e

a b5 c1 d5 e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply :

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

C → D

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c1 d e

a4 b4 c d e

a b5 c1 d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply :

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

DE → C

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c1 d e

a4 b4 c d e

a b5 c1 d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply : Unify the C-value if the D and E value are
same

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

DE → C

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c1 d e

a4 b4 c d e

a b5 c1 d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply : Unify the C-value if the D and E value are
same

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

DE → C

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply : Unify the C-value if the D and E value are
same

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

DE → C

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a3 b c d e

a4 b4 c d e

a b5 c d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Apply

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• While we can continue, we do not have to:

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e

Another Example
• decomposed into , , , ,

• Functional dependencies are , , , , and

• Now chase using functional dependencies

• Middle row has no indexed values:

R(ABCDE) R1(AD) R2(AB) R3(BE) R4(CDE) R5(AE)
A → C B → C C → D DE → C CE → A

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e

Another Example
• This shows that the decomposition has a lossless join

A B C D E

a b1 c1 d e1

a b c1 d e2

a b c d e

a b4 c d e

a b5 c d e

Third Normal Form
• Decomposition

• Avoid update and delete anomalies

• Guarantee lossless joins

• Decomposition does not generate spurious data

• Want to check functional dependencies in the derived
tables

Third Normal Form
• Sometimes, checking FDs is impossible

• Example: R(street, city, zip)

• street, city —> zip

• zip —> city

• Bring into BCNF: {street, city} and {street,
zip} are keys, zip —> city violates BCNF

• Decompose into R1(zip, city), R2(zip,
street)

• But now we cannot check street, city —> zip

Third Normal Form
• Example:

• looks fine

street zip

123 Wisconsin Avenue 53230

123 Wisconsin Avenue 53231

city zip

Milwaukee 53230

Milwaukee 53231

Third Normal Form
• But join gives:

• which violates a FD

street city zip

123 Wisconsin Avenue Milwaukee 53230

123 Wisconsin Avenue Milwaukee 53231

Third Normal Form
• So we should not do this.

• “Elegant” solution: define the problem away

• The original table needs to be “normal”

• A relation is in third normal form iff

• For every non-trivial FD

• is a superkey

• is prime (member of at least one key

X → A

X

A

Third Normal Form
• A relation is in third normal form

• If is a non-trivial FD, then

• either is a superkey

• or those of not in
are each member of some key (not necessarily the
same)

• Attributes that are part of some key are called prime

R

A1A2…An → B1B2…Bm

{A1, A2, …, An}

{B1, B2, …, Bm} {A1, A2, …, An}

Third Normal Form
• Example:

•

• is in third normal form

• city is part of a key

bookings(title, theater, city)

theater --> city

title, city --> theater

Third Normal Form
• Example:

•

• is in third normal form

• zip is prime

addresses(city, street, zip)

zip --> city

city, street --> zip

Third Normal Form
• Creation of 3NF Schemas

• Want to decompose a relation into a set of relations
such that

• All relations in the set are in 3NF

• The decomposition has a lossless join

• The decomposition preserves dependencies

R

Third Normal Form
• Synthesis Algorithm

• Given a relation and a set of FDs

• Find a minimal base for

• For all FD : use as a schema

• If none of the relation schemas from previous step
are a superkey for , add another relation whose
schema is a key for R

R 𝔽

𝔾 𝔽

X → A ∈ 𝔾 XA

R

Third Normal Form
• Example:

• with FDs , , R(A, B, C, D, E) AB → C C → B A → D

Third Normal Form
• Example:

• The FDs are their own base:

• Show: None of , , follows
from the other two

• Show: Cannot drop an attribute from a right side

AB → C C → B A → D

Third Normal Form
• Example: with FDs , ,

• This gives relations

• , ,

• Keys of are and

• Need to add one of them

• , , ,

R(A, B, C, D, E) AB → C C → B
A → D

S1(A, B, C) S2(B, C) S3(A, D)

R A, B, E A, C, E

S1(A, B, C) S2(B, C) S3(A, D) S4(A, C, E)

Third Normal Form
• Why does this work

• Lossless join:

• We use the “Chase”

• There is one subset of attributes in the
decomposition that is a superkey .

• The closure of is all the attributes.

• We start with a tableau

𝕂

𝕂

Third Normal Form
• Lossless join -- Chase

• Use the FDs used in calculating the closure of .

• We can assume that the FDs are in the base

• Let the first FD be .

• Tableau:

• The application of the FD sets b1 to b

𝕂

𝕏 ⊃ 𝔸 → B

 rest of attributes
r,s,t, e, f, b1 **
r,s t1 e1 f1 b **

𝔸 𝕏\𝔸 B
row
row FD

𝕂

Third Normal Form
• Lossless join -- Chase

• We continue the process.

• Next FD might use column or not, but because of
it, we loose the subscript in the column
corresponding to the right side

• Eventually, we have removed all subscripts in the first
row

• Therefore, the decomposition is loss-less

B

Third Normal Form
• Dependency Preservation

• Any FD is the consequence of the FDs in the base

• Any FD in the base is represented by a relation in the
decomposition

• Therefore, we can first check those and as a
consequence get all the FDs

Third Normal Form
• Is the decomposition in third normal form

• If we add a relation that corresponds to a key, then this
relation is by definition in third normal form

• If we add a relation that corresponds to an FD in the
basis:

• Can show: If the relation is not in 3NF, then the basis
is not minimal

Multivalued Dependencies
• First Normal Form: All values in a relation are atomic

• This is removed by object-relational databases

• If the value of an attribute is a set, we represent it by
using many relations

A B C
1 2 {3,4}
4 5 {3,4}

A B C
1 2 3
1 2 4
4 5 3
4 5 4

Multivalued Dependencies
• A more practical example

• Relation course(number, book, lecturer)

• In this department, the books recommended and the
lecturers are independent.

• calc 1 | Ross | Krenz
calc 1 | Lang | Krenz
calc 1 | Ross | Sanders
calc 1 | Lang | Sanders
calc 2 | Ash | Gillen
calc 2 | Ash | Engbers
calc 1 | Ross | Schwarz
calc 1 | Lang | Schwarz

Multivalued Dependencies
• The same list can be expressed using sets more simply

calc 1 | Ross | Krenz
calc 1 | Lang | Krenz
calc 1 | Ross | Sanders
calc 1 | Lang | Sanders
calc 2 | Ash | Gillen
calc 2 | Ash | Engbers
calc 1 | Ross | Schwarz
calc 1 | Lang | Schwarz

calc1 | {Ross, Lang} | {Krenz, Sanders, Schwarz}
calc2 | {Ash} | {Gillen, Engbers}

Multivalued Dependencies
• It would be an error to add a single tuple

• calc 1 | Burlow | Krenz

• to the relation

• indicating that an additional book is now recommended

• Instead, need to add:

• calc 1 | Burlow | Sanders

• calc 1 | Burlow | Schwarz

• as well

Multivalued Dependencies
• This gives rise to the definition of a multivalued

dependency

• Unlike before, we now demand that additional tuples
exist in the relation.

Multivalued Dependencies
• Formally:

• Whenever

• two tuples agree on its values in

• the tuples have values and in

• the tuples have values and in the other
attributes

• then the tuples and
 also exist

A1, A2, …, An ↠ B1, …Bm

A1, A2, …, An

b1…bm b′ 1…b′ m B1, B2, …, Bm

x1…xr x′ 1…x′ r

a1…anb′ 1…b′ mx1…xr
a′ 1…a′ nb1…bmx′ 1…x′ r

Multivalued Dependencies
• For each pair of tuples t and u of a relation R that agree

on all attributes :

• We can find another tuple v such that v agrees :

• With both t and u on

• With t on

• With u on all attributes that are not among the As
and Bs

A1, A2, …, An

A1, A2, …, An

B1, B2, …, Bm

Multivalued Dependencies
• Example

• Relation courses

• has FD and course ↠ book course ↠ lecturer

calc 1 | Ross | Krenz
calc 1 | Lang | Krenz
calc 1 | Ross | Sanders
calc 1 | Lang | Sanders
calc 2 | Ash | Gillen
calc 2 | Ash | Engbers
calc 1 | Ross | Schwarz
calc 1 | Lang | Schwarz

Multivalued Dependencies
• Example stars(name, address, movie)

• A star can have several address and can be in several
movies

• But: for each movie, all addresses of the star need to
appear

• But: for each address, all movies need to appear

Multivalued Dependencies
• Trivial MVD

• If then

•
{B1, …, Bm} ⊂ {A1, …, An}

A1…An ↠ B1…Bm

Multivalued Dependencies
• Transitive MVDs

• and implies

• Provided that we remove any C-attributes that are also
A-attributes

A1…An ↠ B1…Bm B1…Bm ↠ C1…Ck
A1…An ↠ C1…Ck

Multivalued Dependencies
• Splitting is NOT true

• stars(name, street, city, title, year)

• has MVD

• name street, city

• However, name street is not true.

• John Wayne, 123 Elm Street, Malibu, Hatari, 1962

• John Wayne, 456 Overland, Culver City, Hatari, 1962

• John Wayne, 123 Elm Street, Malibu, Shootist, 1976

• John Wayne, 456 Overland, Culver City, Shootist, 1976

• DOES NOT HAVE

• John Wayne, 123 Elm Street, Culver City, Hatari, 1962

↠

↠

Multivalued Dependencies
• Promotion

• Any FD is also an MVD

Multivalued Dependencies
• Complementation

• If and are the attributes
not in the As and Bs, then

A1…An ↠ B1…Bm C1…Ck
A1…An ↠ C1…Ck

Fourth Normal Form
• A relation is in fourth normal form if whenever

 is a non-trivial MVD

• Then is a super-key

A1…An ↠ B1…Bm

A1…An

Normal Forms
• We have 4NF BCNF 3NF

•

⇒ ⇒

3NF BCNF 4NF

eliminate redundancies
due to FDs no yes yes

eliminates redundancies
due to MVDs no no yes

preserves FDs yes no no

preserves MVDs no no no

lossless joins yes yes yes

