
Database System
Interactions

Thomas Schwarz, SJ

Three Tier Web Server
Architecture

• Standard architecture for e-commerce sites

• Tiered / layered architecture around since the THE
operating system 1965

Presentation Layer: Web Services

Application Layer: Business Logic

Data Layer: DBMS

html5, Javascript

Java, .Net, C#, Python, C++

MySQL, PostgresSQL, SQL Server, MongoDB

Three Tier Web Server
Architecture

• Web Services Layer:

• User interact with the site using a web browser

• Forms, scripts, …

• Requests are being routed to the application layer

• Simple example: Embed PHP scripts into a web
server

• Download: LAMP / WAMP / XAMPP etc. With Apache, MySQL, PHP, Perl, …

• Embed PHP script in HTML: <?php … ?>

Three Tier Web Server
Architecture

• Application Tier

• Simple system: Bypass application tier by directly
translating web requests to database requests

• Normally:

• Integrate different databases

• Implement business logic

Three Tier Web Server
Architecture

• Database Tier:

• Executes queries (including updates and inserts)

Integrating SQL with
Application Layer

• Application layer uses languages like PHP, Python, Java,
…

• Needs to interact with an application programming
environment

SQL Environment
• SQL environment

• Schemas: Tables, views, assertions, triggers, stored
procedures, character sets, grant statements (for rights)
maintained by a catalog

• Servers / Clients

• Clients need to connect to a server

• Client/server connection is divided into Sessions

• Each session selects a catalog and a schema

Integrating SQL with
Application Layer

• Impedance mismatch problem

• All languages / environment are Turing complete

• Standard SQL is not:

• Not everything that a computer can do can be done
with SQL

• E.g. cannot compute factorial with SQL

• Need to use both SQL (to interact with database) AND
application level program

Integrating SQL with
Application Layer

• Program sets up a connection to a database and closes it
at the end

• which might be automatic

Integrating SQL with
Application Layer

• Central idea is the 'cursor'

• Basically a pointer into the result table of an SQL query

• Usually:

• Can get result table row by row

• Can get result table all at once

• Could be hard on memory resources

• Can get result table in tranches

Integrating Python with
MySQL

• Solutions differ widely according to application tier
environment and

• Here: look at how to connect Python with MySQL

• There are a variety of Python packages that will do that

• I chose SQL-connector

Python 3 SQL connector
• Needed: Python 3

• Install MySQL Connector

• Install with pip

• Be careful for which Python you install

• E.g. Mac has a Python 2.7 installed as part of the OS

• pip3.13 install mysql.connector

• You will need to know your MySQL password

• If necessary, just re-install MySQL

Python 3 MySQL Connector
• You can use

• https://www.mysqltutorial.org/python-mysql/

Installing a database
• https://www.mysqltutorial.org/python-mysql/python-

connecting-mysql-databases/

• Get the pub database and run it:

• Download and move zip-file into a project directory

• In the directory, invoke mysql

• Create the database

%mysql -u root -p

mysql> source pub.sql

Setting up a connection
import mysql.connector as mc

PASSWORD = '1ignatius'

mydb = mysql.connector.connect(
 host = 'localhost',
 user = 'root',
 password = PASSWORD
)

Using configparser
• Python module to read configuration files

• Similar to .ini files in windows

• Allows many scripts to use the same configuration

• Configuration files are broken into section

Using configparser
• Create a file app.ini

[mysql]
host = localhost
port = 3306
database = pub
user = root
password = 1ignatius

Using configparser
def read_config(filename='app.ini',
section='mysql'):
 config = ConfigParser()
 config.read(filename)
 data = {}
 if config.has_section(section):
 items = config.items(section)
 for entry, value in items:
 data[entry] = value
 else:
 raise Exception(f'{section} section not
found')
 return data

Cursors
• After establishing a connection to the database, you use a

cursor

• Cursors are also used in stored procedures

• Cursors allow to pass through the result from a select row
by row

 cursor = conn.cursor()

Cursors
• We use the cursor to place queries and also to retrieve

rows

• There are several ways to get the results

• Using tuple assignment

cursor.execute("""SELECT first_name, last_name
 FROM authors""")

for (fn, ln) in cursor:
 print(fn, ln)

Cursors
• Number of tuples:

• Use cursor.rowcount

• fetchall fetches all (remaining) rows of a query result
and returns a list of tuples

•

print('Total Row(s):', cursor.rowcount)

rows = cursor.fetchall()
 for row in rows:
 print(row)

Cursors
• fetchone gets the next result

for _ in range(5):
 row = cursor.fetchone()
 print(row)
 print(5*'\n')
 rows = cursor.fetchall()
 for row in rows:
 print(row)

Cursors

while row is not None:
 print(row)
 row = cursor.fetchone()

Cursors
• fetchmany gets a number of tuples

for _ in range(10):
 rows = cursor.fetchmany(5)
 for row in rows:
 print(row)
 print(2*'\n')

Cursors
• There a variety of cursors

• This cursor returns the results as a dictionary

 cursor = conn.cursor(dictionary = True)

SQL for Data Analysis
Thomas Schwarz, SJ

2025

Data Cleaning and Data
Wrangling

• Difficult to understand data

• Data dictionary:

• Repository describing:

• fields

• possible values

• data collection modes

• relation to other data

Data Cleaning and Data
Wrangling

• Structured versus unstructured data

• Unstructured data does not fit easily into databases

• Often stored outside

• Difficult to query

• Quantitative versus qualitative data

• First-, Second-, Third-Party Data

• collected by organization itself, collected from vendors
and other service providers, or collected by
government or free sources

Data Cleaning and Data
Wrangling

• Exploratory Data Analysis (EDA)

• Collect summaries and visualizations

• Fit distributions to numerical data

• Use histograms and frequencies

Data Cleaning and Data
Wrangling

• Example: Distribution of the number of payments in sakila

• We get the number of payments a client has made

SELECT customer_id, count(payment_id) as payments
 FROM payment
 GROUP BY customer_id;

Data Cleaning and Data
Wrangling

• However: we want to know the number of clients that
made x payments

• Use the previous result as a subquery

SELECT payments, count(*) as num_customers
FROM
(
 SELECT customer_id, count(payment_id) as payments
 FROM payment
 GROUP BY customer_id
) temp
GROUP BY payments
ORDER BY payments ASC;

Data Cleaning and Data
Wrangling

• Explanation

SELECT payments, count(*) as num_customers
FROM
(
 SELECT customer_id, count(payment_id) as payments
 FROM payment
 GROUP BY customer_id
) temp
GROUP BY payments
ORDER BY payments ASC;

Data Cleaning and Data
Wrangling

• Explanation:

SELECT payments, count(*) as num_customers
FROM
(
 SELECT customer_id, count(payment_id) as payments
 FROM payment
 GROUP BY customer_id
) temp
GROUP BY payments
ORDER BY payments ASC;

Outer query counts the number of
times a certain number of
payments has been made

Data Cleaning and Data
Wrangling

• Explanation:

SELECT payments, count(*) as num_customers
FROM
(
 SELECT customer_id, count(payment_id) as payments
 FROM payment
 GROUP BY customer_id
) temp
GROUP BY payments
ORDER BY payments ASC;

And then we order

Data Cleaning and Data
Wrangling

• Binning:

• Can use case statement

• Create bins using a case statement

SELECT
CASE
WHEN payments < 10 THEN ',10'
WHEN 10 <= payments AND payments <20 THEN '10, 20'
WHEN 20 <= payments AND payments <30 THEN '20, 30'
WHEN 30 <= payments AND payments <40 THEN '30, 40'
WHEN 40 <= payments THEN '40, '
END AS bin,
num_customers FROM
 (SELECT
 payments, COUNT(*) AS num_customers
 FROM
 (SELECT
 customer_id, COUNT(payment_id) AS payments
 FROM
 payment
 GROUP BY customer_id) temp
GROUP BY payments);

SELECT
 CASE
 WHEN payments < 10 THEN ',10'
 WHEN 10 <= payments AND payments < 20 THEN '10, 20'
 WHEN 20 <= payments AND payments < 30 THEN '20, 30'
 WHEN 30 <= payments AND payments < 40 THEN '30, 40'
 WHEN 40 <= payments THEN '40, '
 END AS bin,
 SUM(num_customers)
FROM
 (SELECT
 payments, COUNT(*) AS num_customers
 FROM
 (SELECT
 customer_id, COUNT(payment_id) AS payments
 FROM
 payment
 GROUP BY customer_id) temp
 GROUP BY payments) temp2
GROUP BY bin
;

Data Cleaning and Data
Wrangling

• Deduplication

• Duplicates are normal

• Find customers who made a payment last month
(Feb. 2006)

• Send a coupon to these customers

SELECT customer_id
FROM payment
WHERE Month(last_update) = 2 AND YEAR(last_update) = 2006;

Data Cleaning and Data
Wrangling

• Deduplicate by using distinct

SELECT DISTINCT customer_id
FROM payment
WHERE Month(last_update) = 2 AND YEAR(last_update) = 2006;

Data Cleaning and Data
Wrangling

• Deduplication with "Group By"

SELECT customer_id, first_name, last_name
FROM payment JOIN customer USING(customer_id)
WHERE Month(payment.last_update) = 2
 AND YEAR(payment.last_update) = 2006
GROUP BY customer_id, first_name, last_name;

Sampling
• Can use RAND() to make a random selection

CREATE PROCEDURE get_sample()
BEGIN
 DROP TABLE IF EXISTS sample;
 CREATE TEMPORARY TABLE sample
 SELECT
 title
 FROM
 books
 WHERE RAND() < 0.1;
END$$

DELIMITER ;

CALL get_sample();

SELECT * FROM sample;

To sample several times,
we need to drop the temp

table first

Sampling
• Can use RAND() to make a random selection

CREATE PROCEDURE get_sample()
BEGIN
 DROP TABLE IF EXISTS sample;
 CREATE TEMPORARY TABLE sample
 SELECT
 title
 FROM
 books
 WHERE RAND() < 0.1;
END$$

DELIMITER ;

CALL get_sample();

SELECT * FROM sample;

Creating the
sample table

Sampling
• Can use RAND() to make a random selection

CREATE PROCEDURE get_sample()
BEGIN
 DROP TABLE IF EXISTS sample;
 CREATE TEMPORARY TABLE sample
 SELECT
 title
 FROM
 books
 WHERE RAND() < 0.1;
END$$

DELIMITER ;

CALL get_sample();
SELECT * FROM sample;

Selects a record with 10%
probability

Sampling
• Can use RAND() to make a random selection

CREATE PROCEDURE get_sample()
BEGIN
 DROP TABLE IF EXISTS sample;
 CREATE TEMPORARY TABLE sample
 SELECT
 title
 FROM
 books
 WHERE RAND() < 0.1;
END$$

DELIMITER ;

CALL get_sample();
SELECT * FROM sample;

Repeat this several times
to see that we get

independent samples

DELIMITER $$
CREATE PROCEDURE get_sample(OUT sample_size INT)
BEGIN
 DROP TABLE IF EXISTS sample;
 CREATE TEMPORARY TABLE sample
 SELECT
 title
 FROM
 books
 WHERE RAND() < 0.1;

 SELECT COUNT(*) INTO sample_size
 FROM sample;

END$$

DELIMITER

