
Database Security
Principles
Thomas Schwarz, SJ

Security Principles
• CIA-DAD Triad

Security Principles
• I-A-A-A

• Identification

• Authentication

• Authorization

• Auditing / Accounting

• SMART

• Specific, Measurable, Attainable, Realistic, and Time
bound

Security Principles
• Firewalls, Access Controls, Access Control Lists

Security Principles
• Protecting Data:

• Encrypt: Symmetric - Asymmetric, PKI

• Compress

• Index

• Archive

• Follow NIST guidelines:

• 	 AES 128 for Secret Encryption

• 	 AES 256 for Top Secret

• 	 SHA 256 for Secret Hashing

• 	 SHA 384 for Top Secret

Authorization

Authorization
• Basic Structure

• Subjects have rights over objects
• Subjects can also be objects (e.g. processes can

generate other processes and retain rights over them)
• Basic Implementation

• Rights matrix
• Subjects - rows
• Objects - columns
• Entries - rights

Authorization
• Rights matrix:

• Implemented as a sparse matrix
• Implemented as a relational database table
• Implemented as access control lists:

• Each object has a list of users with rights over it
• Implemented as Capabilities

• Each subject has a list of objects with rights
over them

Authorization
• Static Authorization

• No generation of objects, subjects, rights
• Theoretically and practically treatable
• Can prove that certain actions remain prohibited

• Dynamic Authorization
• Generation of new subjects, objects, and rights
• Inheritance of rights
• Determining whether certain actions remain prohibited

is NP-complete

Access Control
• Intermediate Access Control Mechanisms

• Groups
• Permissions through belonging to a group
• Denials implemented by exceptions

• Protection Rings:
• Subjects and objects are ordered in a linear

hierarchy
• E.g. Ultra — Top Secret — Secret —

Confidential — Open

Access Control
• Protection Ring Example:

• CPU Hardware allows for four levels of protection
• OS - Kernel
• OS
• Utilities
• User Processes

• A process can only access an object if it belongs to the
same or a lower level of control

• Processes can create objects only at their own level

Access Control
• Intermediate Access Control Mechanisms

• Security Classes (a.k.a.) Security Lables
• Information control policies consists of

• Security class definitions
• Definition of a “can flow” relationship
• A join operation A # B that combines rights

and restrictions of two classes

Access Control
• Styles of control:

• DAC — Discretionary Access Control
• Access is granted based on identity of objects and subjects

• MAC — Mandatory Access Control
• Access mediated by security levels
• Subject cannot pass information to subjects with lower

classification
• No read up: Subject can only read objects at the same or

lower security level
• No write down: Subject can only write to objects of the same

or higher security level

Access Control
• Refined MAC

• Instead of heaving a linear hierarchy, have a grid
hierarchy
• Example:

• CRYPTO for cryptographic algorithms
• COMSEC for communications security
• OPSEC for operational security

• Each object, subject has now three classifications
• All the rules still apply

Access Control
• Role-Based Access Control
• A role describes an aspect of a subject
• A subject can change role (but not group)
• Rights depend only on the role

Access Control
• RBAC Example:

• Hospital:
• Roles:

• Attending physician
• Dietitian
• Nurse
• Pharmacist
• Accountant
• Chaplain
• Social worker
• …

Access Control
• RBAC Hospital example:

• Chaplain can look up religious affiliation of a
patient

• Accountant can find home address and insurance
information

• Dietician cannot find home phone number
• Doctor cannot find insurance carrier of a patient
• Doctor cannot find health history of another

doctor’s patient

Access Control
• EXERCISE

• Read one of
• http://crpit.com/confpapers/

CRPITV32Evered.pdf
• http://mjcs.fsktm.um.edu.my/document.aspx?

FileName=99.pdf
• Create 1-2 pages précis

http://crpit.com/confpapers/CRPITV32Evered.pdf
http://crpit.com/confpapers/CRPITV32Evered.pdf

Authorization
• RBAC:

• Access control is designed:
• Identifying roles
• Identifying object classes
• Establishing rules based on roles and object

classes

Applications to Databases
• Use stored procedures to update and read tuples

• Weak point: stored procedures might be accessed by
the adversary

Applications to Databases
• Grant rights to users

• Create Roles

CREATE ROLE Human_Resc_Read;

GRANT SELECT on Finance.EmpView, Finance.Employees to
Human_Resc_read;

CREATE ROLE Human_Resc_Write;

GRANT DELETE, INSERT, UPDATE on Finance.EmpView,
Finance.Employees to Human_Resc_read;

Applications to MySQL
• Create users

• Check users:

CREATE USER [IF NOT EXISTS] account_name
IDENTIFIED BY 'password';

SELECT
 user
FROM
 mysql.user;

create user bob@localhost
identified by 'Marquette';

select user from mysql.user;

Applications to MySQL
• Granting privileges:

• Privilege levels:

• Global

• Database

• Table

• Column

• Stored Routine

Applications to MySQL
• Global:

GRANT SELECT
ON *.*
TO bob@localhost;

Applications to MySQL
• Databases:

GRANT INSERT
ON classicmodels.*
TO bob@localhost;

GRANT DELETE
ON classicmodels.employees
TO bob@localhsot;

Applications to MySQL
• Attributes:

GRANT
 SELECT (employeeNumner,lastName,firstName,email),
 UPDATE(lastName)
ON employees
TO bob@localhost;

Applications to MySQL
• Stored Procedures

GRANT EXECUTE
ON PROCEDURE CheckCredit
TO bob@localhost;

Applications to MySQL
• Proxy:

• Allows one user to act for another

GRANT PROXY
ON bob@localhost
TO alice@localhost;

SHOW GRANTS FOR super@localhost;

Applications to MySQL
• Revoking:

REVOKE privilegee [,privilege]..
ON [object_type] privilege_level
FROM user1 [, user2] ..;

Applications to MySQL

REVOKE
 ALL [PRIVILEGES],
 GRANT OPTION
FROM user1 [, user2];

Applications to MySQL
• Creating roles

• Example:

• create a database crm

• switch to the database

CREATE DATABASE crm;

USE crm;

Example
• Create a table

CREATE TABLE customers(
 id INT PRIMARY KEY AUTO_INCREMENT,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 phone VARCHAR(15) NOT NULL,
 email VARCHAR(255)
);

Example
• Populate table

INSERT INTO
customers(first_name,last_name,phone,email)
VALUES
('John','Doe','4081234567','j.doe@marquette.edu'),
('Bambi','Roe','4087654321','b.roe@marquette.edu');

Example
• Create three roles:

CREATE ROLE
 crm_dev,
 crm_read,
 crm_write;

Example
• Grant rights:

GRANT SELECT
ON crm.*
TO crm_read;

GRANT ALL
ON crm.*
TO crm_dev;

Example
• Granting rights

GRANT INSERT, UPDATE, DELETE
ON crm.*
TO crm_write;

Example
• Create users

CREATE USER crm_dev1@localhost IDENTIFIED BY
'Secure$1782';

CREATE USER crm_read1@localhost IDENTIFIED BY
'Secure$5432';

CREATE USER crm_write1@localhost IDENTIFIED BY
'Secure$9075';
CREATE USER crm_write2@localhost IDENTIFIED BY
'Secure$3452';

Example
• Assign roles to users:

GRANT crm_dev
TO crm_dev1@localhost;

GRANT crm_read,
 crm_write
TO crm_write1@localhost,
 crm_write2@localhost;

GRANT crm_read
TO crm_read1@localhost;

Example
• Display grants

• Display privileges

SHOW GRANTS FOR crm_dev1@localhost;

SHOW GRANTS
FOR crm_write1@localhost
USING crm_write;

Example
• Users still need to activate roles

SET ROLE NONE;

SET ROLE DEFAULT;

SET ROLE
 granted_role_1

Example

REVOKE INSERT, UPDATE, DELETE
ON crm.*
FROM crm_write;

Injection Attacks

SQL Injection
• Scenario: Website input is made into an sql query to

a database

• User enters “Schwarz"

• User enters “'Schwarz' or 1=1 ”

string sql = “select * from client where name = ‘ “
+ uname + “ ’ ”;

string sql = “select * from client where name
= ‘ Schwarz’ ”;

string sql = “select * from client where name =
‘Schwarz’ or 1=1”;

SQL Injections
• Some database servers allow more than one SQL

statement
• Use: “Schwarz' drop table client”
• Result makes a lookup and then destroys the

table
• Results are magnified when the database runs with

administrator privileges

SQL Injection
• URL query string for an article

• Without filtering passed to SQL gives:

SELECT name, picture, description price FROM
products WHERE id=666

http://somesite.com/store/itemdetail.asp?id=666

http://somesite.com/store/itemdetail.asp?id=666

$SQLquery = “SELECT * FROM users WHERE username=`”.
$_POST[“username”].”’ AND password=‘”.$_POST[“password”].”’”;
$DBresult=db_query($SQLQuery);
if($DBresult) {

// username-password is correct, log the user on
}
else {

//username-password is incorrect
}

SELECT accountdata FROM acountinfo
WHERE accountid = ` ‘;
INSERT INTO accountdata (accountid,password)
VALUES (`thomas`,’12345’) – ‘ AND password = ‘ ‘

Examples
2008 Heartland Payment System

Approximately 130 million credit and debit card
numbers were exposed.

2011 Sony Pictures
77 million PlayStation Network accounts
estimated $170 million damage

Examples
TalkTalk (2015)

157,000 customers

Try It Out

https://portswigger.net/web-security/sql-injection

