
Transactions
Stored Procedures

Triggers
Thomas Schwarz, SJ

Transactions

Transactions
• Databases have to process many operations in parallel

• This means some support for inter-process
communication

• Usually provided by locking

• DBMS differ in what they provide

• Serializability:

• All transactions appear to have been executed one
after the other

ACID
• Atomicity: transactions is treated as a single, indivisible

unit of work

• Consistency: If the DB is consistent before, it is
consistent afterwards

• Isolation: Concurrent transactions do not interfere with
each others

• Durability: Once a transaction is committed, its effects are
permanent.

Transactions
• Atomicity

• A single query is never interrupted:

• Example:

• A transfer of money from one account to another
is executed completely or not at all

• Both accounts have changed or none

Transactions
• Transaction

• A group of SQL statements that are all processed in the
order given or not at all

• SQL:

• START TRANSACTION

• either

• COMMIT

• ROLLBACK

Transactions
• Read only transactions

• By declaring a transaction as read-only, SQL can
usually perform it quicker

• SET TRANSACTION READ ONLY;

• SET TRANSACTION READ WRITE;

Transactions
• Dirty Reads:

• Reading a record from an update that will be rolled-back

• Are dirty reads bad?

• Depends

• Sometimes, it does not matter, and we do not want the
DBMS spend time on making sure that there are no
dirty reads

• Sometimes, a dirty read can absolutely mess up things

• Selling the same commodity to two customers, …

Transactions
• SQL Isolation Levels:

• Allow dirty reads:

• SET TRANSACTION READ WRITE

• SET ISOLATION LEVEL READ UNCOMMITTED

Transactions
• SQL Isolation Levels:

• Allow reads only of committed data:

• SET TRANSACTION READ WRITE

• SET ISOLATION LEVEL READ COMMITTED

Transactions
• SQL Isolation Levels:

• Disallow dirty reads, but insure that the reads are
consistent:

• SET TRANSACTION READ WRITE

• SET ISOLATION LEVEL READ REPEATABLE READ

Transactions
• SQL Isolation Levels:

• Serializability (default):

• SET TRANSACTION READ WRITE

• SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE

MySQL Transactions
• MySQL automatically wraps SQL statements into

transactions

• Control behavior with SET autocommit = OFF;

• Explicit transactions

• START TRANSACTION

• aliases: BEGIN, BEGIN WORK

• COMMIT

• ROLLBACK

MySQL Transactions
• Example: CREATE DATABASE banks;

USE banks;

DROP TABLE IF EXISTS users;

CREATE TABLE users (
 id INT PRIMARY KEY AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 email CHAR(30)
);

START TRANSACTION;
INSERT INTO users(name)
VALUES ('Thomas Schwarz');

UPDATE users
SET email = 'thomas.schwarz@marquette.edu';

MySQL Transactions
• Open up a new window:

• Transaction not committed, cannot see anything

MySQL Transactions
• In the first session:

•

• Shows the row:

•

SELECT * FROM users;

MySQL Transactions
• In the first session:

•

• Go back to the second session:

COMMIT;

MySQL Transactions
• If we had done a

•

• the table would be empty

ROLLBACK;

Stored Procedures
Thomas Schwarz, SJ

Stored Routines
• Stored Routine:

• SQL statement or set of SQL statements that can be
stored in the database server

• Can be a function

• Can be a stored procedure

MySQL Stored Procedures
• Delimiters

• Semicolon acts as a delimiter in SQL and Procedures

• Need to change delimiter

• Can be set to anything

• E.g. double dollar sign

• Afterwards reset it

DELIMITER $$

…

DELIMITER ;

MySQL Stored Procedures
• We can generate stored procedures from within MySQL

workbench

• Click on Stored Procedures at the end of the schema
and select create stored procedure

MySQL Stored Procedures
• We can generate stored procedure using SQL

use employees;

DELIMITER $$

CREATE PROCEDURE myproc()
 BEGIN
 SELECT *
 FROM employees
 WHERE first_name LIKE ‘th%’;
 END
$$

DELIMITER ;

Keywords are CREATE
PROCEDURE

MySQL Stored Procedures
• We can generate stored procedure using SQL

use employees;

DELIMITER $$

CREATE PROCEDURE myproc()
 BEGIN
 SELECT *
 FROM employees
 WHERE first_name LIKE 'th%';
 END
$$

DELIMITER ;

Need to give it a name

MySQL Stored Procedures
• We can generate stored procedure using SQL

use employees;

DELIMITER $$

CREATE PROCEDURE myproc()
 BEGIN
 SELECT *
 FROM employees
 WHERE first_name LIKE 'th%';
 END
$$

DELIMITER ;

Can have arguments

MySQL Stored Procedures
• We can generate stored procedure using SQL

use employees;

DELIMITER $$

CREATE PROCEDURE myproc()
 BEGIN
 SELECT *
 FROM employees
 WHERE first_name LIKE 'th%';
 END
$$

DELIMITER ;

BEGIN END encapsulate
a SQL query terminated
with ;

MySQL Stored Procedures
• We can generate stored procedure using SQL

use employees;

DELIMITER $$

CREATE PROCEDURE myproc()
 BEGIN
 SELECT *
 FROM employees
 WHERE first_name LIKE 'th%';
 END
$$

DELIMITER ;

Don't forget to change
the delimiter back to ;

• We can call a stored
procedure

• From within the
workbench, by clicking on
it

• Using CALL
procedureName()

MySQL Stored Procedures

MySQL Stored Procedures
• Procedure parameters have three types

• IN — input

• OUT — output

• INOUT — both input and output

• Procedure parameters have type

• Definition of parameter:
IN

OUT
INOUT

parameter
name type

,

MySQL Stored Procedures
• Example:

• Change a procedure

• You can use workbench by selecting the name of the
procedure and select 'alter procedure'

MySQL Stored Procedures
• Changing a

procedure

• After
editing, click
Apply

MySQL Stored Procedures
• Changing a procedure:

• Combine with DROP and CREATE

MySQL Stored Procedures

DELIMITER $$
CREATE PROCEDURE partial_name(IN beg VARCHAR(20))
BEGIN
 SELECT first_name, last_name, gender
 FROM employees
 WHERE first_name LIKE CONCAT(beg, '%') OR last_name LIKE
CONCAT(beg, '%');
END

DELIMITER ;

CALL partial_name('dan');

Single Parameter

MySQL Stored Procedures

DELIMITER $$
CREATE PROCEDURE partial_name(IN beg VARCHAR(20))
BEGIN
 SELECT first_name, last_name, gender
 FROM employees
 WHERE first_name LIKE CONCAT(beg, '%') OR last_name LIKE
CONCAT(beg, '%');
END

DELIMITER ;

CALL partial_name('dan');

Have not yet discussed
variables

MySQL Stored Procedures
• TASK

• Write a stored procedure that takes as input the first
name and the last name of a current employee.

• It then returns:

• The first and last name, gender, employee number,
department, and last salary of the person (if it is in
the database)

HINT
• If you are working with MySQL Workbench, it is less

frustrating to define and make changes in the Stored
Procedures tab on the left.

• The delimiter statements does not work too well

MySQL Stored Procedures

DELIMITER $$

CREATE PROCEDURE data(IN first VARCHAR(14), IN last VARCHAR(16))
BEGIN
 SELECT e.first_name, e.last_name, e.gender, d.dept_name,
 s.salary
 FROM employees e, departments d, salaries s, dept_emp de
 WHERE e.emp_no = de.emp_no AND de.dept_no = d.dept_no
 AND s.emp_no = e.emp_no AND s.to_date = '9999-01-01'
 AND e.first_name = first AND e.last_name = last;
END

DELIMITER ;

MySQL Stored Procedures
• TASK

• Write a stored procedure that takes as input the first
name and the last name of a current or past employee.

• It then returns:

• The first and last name, and average salary of the
person

MySQL Stored Procedures
CREATE PROCEDURE `avg_salary`(
 IN first VARCHAR(12),
 last VARCHAR(16)
)
BEGIN
 SELECT e.first_name, e.last_name, AVG(s.salary)
 FROM employees e, salaries s
 WHERE e.first_name = first
 AND e.last_name = last
 AND e.emp_no = s.emp_no;
END

MySQL Stored Procedures
• Using output variables

• Let's change the previous procedure to return the
average salary

• We need to use the SELECT … INTO … construct

MySQL Stored Procedures
CREATE PROCEDURE avg_salary(
 IN first VARCHAR(12),
 last VARCHAR(16),
 out average_salary DECIMAL(10,2)
)
BEGIN
 SELECT AVG(s.salary)
 INTO average_salary
 FROM employees e, salaries s
 WHERE e.first_name = first
 AND e.last_name = last
 AND e.emp_no = s.emp_no;
END

This is our output

MySQL Stored Procedures
CREATE PROCEDURE avg_salary(
 IN first VARCHAR(12),
 last VARCHAR(16),
 out average_salary DECIMAL(10,2)
)
BEGIN
 SELECT AVG(s.salary)
 INTO average_salary
 FROM employees e, salaries s
 WHERE e.first_name = first
 AND e.last_name = last
 AND e.emp_no = s.emp_no;
END

Type is Decimal with
two digits after

comma

MySQL Stored Procedures
CREATE PROCEDURE avg_salary(
 IN first VARCHAR(12),
 last VARCHAR(16),
 out average_salary DECIMAL(10,2)
)
BEGIN
 SELECT AVG(s.salary)
 INTO average_salary
 FROM employees e, salaries s
 WHERE e.first_name = first
 AND e.last_name = last
 AND e.emp_no = s.emp_no;
END

This is how we set the
value

MySQL Stored Procedures
• How do we call this?

• Easiest is using the lightning symbol in the MySQL
work-bench

MySQL Stored Procedures
• This gives you an interactive window

MySQL
Stored

Procedures

• Result grid
shows the
value

• $75262.06

• But you can
also see how
to call the
procedure as
well.

•

MySQL Stored Procedures
• First, we need to define a variable

MySQL Stored Procedures
• Defining variables

• Variables start with an ampersand @myvar

• You can enclose the name with ' ' or " " to use
other characters than alpha-numeric and '$'

• Initialized with SET

• Assignment is with integer, decimal, floating-point,
binary or non-binary string, or NULL

• Can use CAST if necessary

MySQL Stored Procedures
• We call the function with

• Notice how

• we include the output variable in the call

• we use SELECT to access the value of the variable

SET @avgsal = 0;
CALL avg_salary('Isaac', 'Schwartzbauer', @avgsal);
SELECT @avgsal;

MySQL Stored Procedures
• TASK

• Write a stored procedure that takes as input the first
name and the last name of a current or past employee.

• It then returns:

• The employee number

• Call it from the query tab

MySQL Stored Procedures
• Solution

CREATE DEFINER=`root`@`localhost` PROCEDURE
`employee_number`(
 IN first VARCHAR(12),
 IN last VARCHAR(16),
 OUT empl_numb INT
)
BEGIN
 SELECT emp_no
 INTO empl_numb
 FROM employees
 WHERE first_name = first
 AND last_name = last;
END

MySQL Stored Procedures
• Solution

set @empl_numb = 0;
call employees.employee_number(
 'Isaac',
 'Schwartzbauer',
 @empl_numb
);
select @empl_numb;

MySQL Functions
• A procedure can have more than one output

• Functions have none or one output

• MySQL functions return exactly one value

MySQL Functions
• We can use the MySQL workbench by clicking on

Functions in the scheme pane

• Just below stored procedures

• Or can use a query

• Function values are obtained through a SELECT
statement

• select employees.f_avg(101010);

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

Definition of
a function

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

Name

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

Name and type of input
variable

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

Keyword Returns is needed
plus specification of return

value type

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

Describes behavior of the
function

MySQL Functions
• DETERMINISTIC:

• always produces the same result for the same parameter

• NO SQL:

• function has no SQL statements

• READS SQL DATA

• contains statements that read via SQL, but does not
modify the database

• MODIFIES SQL DATA

• contains statements that write (e.g. inserts)

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

Body of the function

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

Here we define a variable to be used in
several statements

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

The variable has type Decimal(10,2) to
represent currency values

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

The SELECT … INTO … clause updates
the value of v_avg_salary

MySQL Functions
• Example:

CREATE FUNCTION f_avg (p_emp_no INTEGER)
RETURNS decimal(10,2)
READS SQL DATA
BEGIN
 DECLARE v_avg_salary DECIMAL(10,2);
 SELECT AVG(salary)
 INTO v_avg_salary
 FROM salaries s
 WHERE s.emp_no = p_emp_no;
 RETURN v_avg_salary;
END

A function has to return a value

MySQL Functions
• Functions and procedures can have more than one select

value

• Find the last salary of an employee given by first and
last name

• Query 1: Find the last from_date in salaries for the
employee

• We store it in a variable

• Query 2: Return the corresponding salary

CREATE FUNCTION f_latest_salary(p_first_name VARCHAR(12), p_last_name VARCHAR(16))
 RETURNS decimal(10,2)
 READS SQL DATA
BEGIN
 DECLARE v_max_from_date date;
 DECLARE v_last_salary DECIMAL(10,2);

 SELECT
 MAX(from_date)
 INTO v_max_from_date
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name;

 SELECT
 s.salary
 INTO v_last_salary
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name
 AND s.from_date = v_max_from_date;

RETURN v_last_salary;
END

CREATE FUNCTION f_latest_salary(p_first_name VARCHAR(12), p_last_name VARCHAR(16))
 RETURNS decimal(10,2)
 READS SQL DATA
BEGIN
 DECLARE v_max_from_date date;
 DECLARE v_last_salary DECIMAL(10,2);

 SELECT
 MAX(from_date)
 INTO v_max_from_date
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name;

 SELECT
 s.salary
 INTO v_last_salary
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name
 AND s.from_date = v_max_from_date;

RETURN v_last_salary;
END

Declare a variable of
type date to contain the

last contract to-date

CREATE FUNCTION f_latest_salary(p_first_name VARCHAR(12), p_last_name VARCHAR(16))
 RETURNS decimal(10,2)
 READS SQL DATA
BEGIN
 DECLARE v_max_from_date date;
 DECLARE v_last_salary DECIMAL(10,2);

 SELECT MAX(from_date)
 INTO v_max_from_date
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name;

 SELECT
 s.salary
 INTO v_last_salary
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name
 AND s.from_date = v_max_from_date;

RETURN v_last_salary;
END

Declare a variable of
type Decimal for the

salary

CREATE FUNCTION f_latest_salary(p_first_name VARCHAR(12), p_last_name VARCHAR(16))
 RETURNS decimal(10,2)
 READS SQL DATA
BEGIN
 DECLARE v_max_from_date date;
 DECLARE v_last_salary DECIMAL(10,2);

 SELECT MAX(from_date)
 INTO v_max_from_date
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name;

 SELECT
 s.salary
 INTO v_last_salary
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name
 AND s.from_date = v_max_from_date;

RETURN v_last_salary;
END

Determine the last
contract from_date for
an employee with given

first and last name

CREATE FUNCTION f_latest_salary(p_first_name VARCHAR(12), p_last_name VARCHAR(16))
 RETURNS decimal(10,2)
 READS SQL DATA
BEGIN
 DECLARE v_max_from_date date;
 DECLARE v_last_salary DECIMAL(10,2);

 SELECT MAX(from_date)
 INTO v_max_from_date
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name;

 SELECT
 s.salary
 INTO v_last_salary
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name
 AND s.from_date = v_max_from_date;

RETURN v_last_salary;
END

and load it into the
variable

v_max_from_date

CREATE FUNCTION f_latest_salary(p_first_name VARCHAR(12), p_last_name VARCHAR(16))
 RETURNS decimal(10,2)
 READS SQL DATA
BEGIN
 DECLARE v_max_from_date date;
 DECLARE v_last_salary DECIMAL(10,2);

 SELECT MAX(from_date)
 INTO v_max_from_date
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name;

 SELECT
 s.salary
 INTO v_last_salary
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name
 AND s.from_date = v_max_from_date;

RETURN v_last_salary;
END

Second query:

Find the corresponding
amount

CREATE FUNCTION f_latest_salary(p_first_name VARCHAR(12), p_last_name VARCHAR(16))
 RETURNS decimal(10,2)
 READS SQL DATA
BEGIN
 DECLARE v_max_from_date date;
 DECLARE v_last_salary DECIMAL(10,2);

 SELECT MAX(from_date)
 INTO v_max_from_date
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name;

 SELECT
 s.salary
 INTO v_last_salary
 FROM employees e
 JOIN salaries s ON e.emp_no = s.emp_no
 WHERE e.first_name = p_first_name
 AND e.last_name = p_last_name
 AND s.from_date = v_max_from_date;

RETURN v_last_salary;
END

And finally return this
value

MySQL Functions
• Why do we need functions?

• Procedures can not be embedded in a select statement

• But functions can

MySQL Variables
• MySQL has three types of variables

• Local: Scope is in a BEGIN … END block

• Use DECLARE and no ampersand

• Session

• Starts and ends with making a connection to the
database

• One session per current user

• Use SET @variable = NULL

• Global

MySQL Variables
• Global variables

• Survives disconnection

• Needs to be system variables

• E.g. .max_connections(), .max_join_size()

• SET GLOBAL max_connections = 1000;

• SET @@global.max_connections = 1000;

MySQL Variables
• Try it out

• Set max_connections to 1

• Then try another connection in MySQL workbench

Conditions
• MySQL has an IF statement

• MySQL has a CASE statement

• My SQL has a CASE expression

• which is the easiest

CASE attribute
 WHEN … THEN …
 ELSE …
END

CASE Statement
• Example

• Expanding gender

SELECT first_name, last_name, CASE
 WHEN 'M' THEN 'male'
 ELSE 'female'
 END AS gender
FROM employees
WHERE emp_id = p_emp_id;

CASE Statement
• Example:

• Select employee data, including whether they are
managers or not

• Information is in employees and in dept_manager table

• One possibility: Use a LEFT JOIN

• Also: limit queries to a range of emp_no chosen to
have managers and no-managers in it

CASE Statement
SELECT e.emp_no,
 e.first_name,
 e.last_name,
 dm.emp_no
FROM employees e LEFT JOIN dept_manager dm
 ON e.emp_no = dm.emp_no
WHERE e.emp_no BETWEEN 109990 AND 111000;

CASE Statement
SELECT e.emp_no,
 e.first_name,
 e.last_name,
 dm.emp_no
FROM employees e LEFT JOIN dept_manager dm
 ON e.emp_no = dm.emp_no
WHERE e.emp_no BETWEEN 109990 AND 111000;

CASE Statement
• Because this is a left join, we

match the emp_no, but keep
both of them

• the second one is for
dept_manager

• This means that we can use the
case statement

CASE Statement
SELECT e.emp_no,
 e.first_name,
 e.last_name,
 CASE
 WHEN dm.emp_no IS NOT NULL THEN 'manager'
 ELSE 'employee'
 END
FROM employees e LEFT JOIN dept_manager dm
 ON e.emp_no = dm.emp_no
WHERE e.emp_no BETWEEN 109990 AND 111000;

CASE Statement
• The last column of the result

is now the result of the
CASE expression

• The column name is bad, so
we change it with an AS
clause

CASE Statement
SELECT e.emp_no,
 e.first_name,
 e.last_name,
 CASE
 WHEN dm.emp_no IS NOT NULL THEN 'manager'
 ELSE 'employee'
 END AS 'role'
FROM employees e LEFT JOIN dept_manager dm
 ON e.emp_no = dm.emp_no
WHERE e.emp_no BETWEEN 109990 AND 111000;

CASE Statement
SELECT e.emp_no,
 e.first_name,
 e.last_name,
 CASE
 WHEN dm.emp_no IS NOT NULL THEN 'manager'
 ELSE 'employee'
 END AS 'role'
FROM employees e LEFT JOIN dept_manager dm
 ON e.emp_no = dm.emp_no
WHERE e.emp_no BETWEEN 109990 AND 111000;

CASE Statement
• GOTCHA
• NULL and NOT NULL cannot be compared

• So: this does NOT work
SELECT e.emp_no,
 e.first_name,
 e.last_name,
 CASE dm.emp_no
 WHEN NOT NULL THEN 'manager'
 ELSE 'employee'
 END AS 'role'
FROM employees e LEFT JOIN dept_manager dm
 ON e.emp_no = dm.emp_no
WHERE e.emp_no BETWEEN 109990 AND 111000;

CASE Statement
• Result:

• Everyone is an employee because NOT NULL
comparison is never-ever true

CASE Statement
• MySQL has an IF expression

• Can have only one test

• Syntax is IF(condition, valiftrue, valiffalse)

CASE Statement
• Inside a stored procedure, we can use the case statement

to set a variable CREATE PROCEDURE GetDeliveryStatus(
 IN pOrderNumber INT,
 OUT pDeliveryStatus VARCHAR(100)
)
BEGIN
 DECLARE waitingDay INT DEFAULT 0;
 SELECT
 DATEDIFF(requiredDate, shippedDate)
 INTO waitingDay
 FROM orders
 WHERE orderNumber = pOrderNumber;

 CASE
 WHEN waitingDay = 0 THEN
 SET pDeliveryStatus = 'On Time';
 WHEN waitingDay >= 1 AND waitingDay < 5 THEN
 SET pDeliveryStatus = 'Late';
 WHEN waitingDay >= 5 THEN
 SET pDeliveryStatus = 'Very Late';
 ELSE
 SET pDeliveryStatus = 'No Information';
 END CASE;

Transactions in Stored
Procedures

• Go back to the banks example

• Create a table checking

• DROP TABLE IF EXISTS checking;

CREATE TABLE checking (
 id INT PRIMARY KEY,
 amount DECIMAL(28,2),
 CONSTRAINT account_holder_exists
 FOREIGN KEY (id) REFERENCES users(id)
 ON DELETE CASCADE
);

Transactions in Stored
Procedures

• Create checking accounts:

INSERT INTO checking(id, amount)
SELECT id, 1000 FROM users WHERE name = 'Thomas Schwarz';

SELECT * from checking;

INSERT INTO checking(id, amount)
SELECT id, 1000 FROM users WHERE name = 'Dennis Brylow';

INSERT INTO checking(id, amount)
SELECT id, 100 FROM users WHERE name = 'Donald Trump';

Transactions in Stored
Procedures

DELIMITER //
CREATE PROCEDURE transfer(
 IN sender_id INT,
 IN receiver_id INT,
 IN amount DECIMAL(10,2)
)
BEGIN
 DECLARE rollback_message VARCHAR(255) DEFAULT
 'Transaction rolled back: Insufficient funds';
 DECLARE commit_message VARCHAR(255) DEFAULT
 'Transaction committed successfully';

Transactions in Stored
Procedures START TRANSACTION;

 UPDATE checking
 SET checking.amount = checking.amount - my_amount
 WHERE id = sender_id;

 UPDATE checking
 SET checking.amount = checking.amount + my_amount
 WHERE id = receiver_id;

IF (SELECT amount FROM checking WHERE id = sender_id) < 0 THEN
 ROLLBACK;
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = rollback_message;
 ELSE
 COMMIT;
 SELECT commit_message AS 'Result';
 END IF;
END //

DELIMITER ;

Transactions in Stored
Procedures

DELIMITER ;

SELECT * FROM checking;

CALL transfer(1,2,500.00);

SELECT * FROM checking;

Transactions in Stored
Procedures

• In the workbench, you can use the stored procedure flash
to execute the procedure

Transactions in Stored
Procedures

• Example:

• call banks.transfer(2, 1, 3000);

Constraints and
Triggers

Keys and Foreign Keys
• SQL Primary Key declaration

• Equivalent to NOT NULL and UNIQUE

• Creates an index, so lookup with key are faster

• SQL Foreign Key declaration

• Insures that a value in a foreign table exists

• That value must be declared UNIQUE

Keys and Foreign Keys
• Two declarations in SQL

CREATE TABLE studio(
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT REFERENCES MovieExec(cert#)

);

CREATE TABLE studio(
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT,
FOREIGN KEY (presC#) REFERENCES MovieExec(cert#)

);

Keys and Foreign Keys
• What happens if we try to insert into studio a president or

change a presC# whose certificate number does not
match a certificate number in movieExecs?

• What happens if we delete a row from movieExecs or
update a cert# in movieExecs

• (1) Reject modification.

• (2) Cascade operation

• (3) Set NULL

Keys and Foreign Keys
CREATE TABLE studio (
 name CHAR(30) PRIMARY KEY,

address VARCHAR(255),
presC# INT REFERENCES MovieExec(cert#)

ON DELETE SET NULL
ON UPDATE CASCADE

);

• If we delete a movieExec tuple with a studio president,
then the presC# value in studio is replaced by NULL

• If we change a movieExec tuple with a studio president,
then the presC# value gets changed as well

Keys and Foreign Keys
• A tuple with foreign key is "dangling" if the foreign key

does not exist

• Similarly, a tuple that does not participate in a join is
called dangling.

Keys and Foreign Keys
• A table with a foreign key needs to be populated first

• But there are examples of circular references

• To deal with them:

• Make the two insertions part of a single transaction

• Tells the DBMS to not check constraints until the transaction is
finished

• Can declare deferrable

• INITIALLY DEFERRED — check just before a transaction
commits

• INITIALLY IMMEDIATE — check after each statement is
executed

Keys and Foreign Keys

CREATE TABLE studio (
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(255),
 presC# INT UNIQUE
 REFERENCES MovieExec(cert#)
 DEFERRABLE INITIALLY DEFERRED
);

Keys and Foreign Keys
• Can also give constraints names

• Then change is enforcement policy

SET CONSTRAINT myConstraint DEFERRED;

SET CONSTRAINT myConstraint IMMEDIATE;

Constraints on Attributes

• NOT NULL

Constraints on Attributes

• CHECK

• Enforces conditions on an attribute

CREATE TABLE movieExec (
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(255),
 presC# INT REFERENCES MovieExec(cert#)
 CHECK(presC# >= 100000
);

Constraints on Attributes

CREATE TABLE movieStar(
 name VARCHAR(255) PRIMARY KEY;
 address VARCHAR(255);
 gender CHAR(1)
 CHECK(gender IN ('F', 'M', 'X'))
);

Constraints on Attributes
CREATE TABLE parts (
 part_no VARCHAR(18) PRIMARY KEY,
 description VARCHAR(40),
 cost DECIMAL(10,2) NOT NULL CHECK (cost >= 0),
 price DECIMAL(10,2) NOT NULL CHECK (price >= 0)
);
Code language: SQL (Structured Query Language) (sql)

Constraints on Attributes

• Checks cannot be used to replace foreign keys

• The check is only executed by the time the tuple is
inserted or changed

• If movieExec changes, our table is NOT updated

• Also, NULL values would be rejected

…
presC# INT CHECK
 (presC# IN (SELECT cert# FROM movieExec)
…

Constraints on Tuples
• Tuple based checks are executed on Insertion and on

Update

• Checks do not trigger checks for relations mentioned in
checks

CREATE TABLE movieStar(
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(255),
 gender CHAR(1),
 birthdate DATE,
 CHECK(gender = 'F' OR name NOT LIKE 'Ms.%')
);

Constraints on Tuples
• Attribute based checks are executed when

• Attribute is changed

• Tuple inserted

• Tuple based checks are executed when

• Tuple changes

• Tuple inserted

Constraint Modifications
• You should give your constraints names

• Helps with error messages

• Used for changing constraints
name CHAR(30) CONSTRAINT nameIsKey PRIMARY KEY

CONSTRAINT rightTitle
 CHECK(gender = 'F' OR name not like 'Ms.%'

Constraint Modifications
• Dropping constraints

• Use ALTER table
ALTER TABLE movieStar DROP CONSTRAINT nameIsKey;

ALTER TABLE movieStar ADD CONSTRAINT
 nameIsKey PRIMARY KEY(name)

Assertions
• Assertion:

• A boolean valued SQL expression that must be true at
all times

• Trigger:

• Series of actions associated with certain events and
triggered by them

Assertion
• Creating assertions

• Should be true when you call it, unless the assertion is
deferred

CREATE ASSERTION <name> CHECK (<condition>)

Assertion
• Formulating assertions

• Unlike checks, assertions need to specify the relation

movieExec(name, address, cert#, netWorth)
studio(name, address, presC#

CREATE ASSERTION richPres CHECK(
 (NOT EXISTS
 (SELECT studio.name
 FROM studio, movieExec
 WHERE presC# = cert# AND netWorth<1000000
)
);

Assertion
• Formulating assertions

• All studios can only produce <10000 minutes of movies

Assertion

CREATE ASSERTION sumLength CHECK
 (10000 >= ALL
 (SELECT SUM(length)
 FROM movies

 GROUP BY studioName
)
);

Assertion
• Assertions are always checked when there is a change in

the database

• Constraints for a tuple are only checked when a tuple is
updated or inserted

• Therefore, making the previous assertion a check has a
different meaning:

ALTER TABLE movies ADD CONSTRAINT
 maxLength CHECK (10000 >= ALL
 (SELECT SUM(length) FROM movies
 GROUP BY studioName)
);

Assertion
• Dropping assertions

DROP ASSERTION sumLength

Triggers
• A Trigger is awakened at certain events

• insert, delete, updates to a particular relation

• A Trigger then tests a condition.

• If condition is false, nothing more happens

• Otherwise: The action associated with trigger is
executed

Triggers
• Trigger's condition and action executed either :

• state of DB before the triggering event

• state of DB after the triggering event

• Condition and action can refer to both the new and the old
values

• Update events can be limited to certain attribute(s)

• Trigger can execute

• once for each modified tuple — row-level trigger

• once for all tuples changed — statement level trigger

Triggers
• Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
 OLD ROW AS OldTuple,
 NEW ROW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
 UPDATE movieExec
 SET netWorth = OldTuple.netWorth
 WHERE cert# = NewTuple.cert#

Triggers
• Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
 OLD ROW AS OldTuple,
 NEW ROW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
 UPDATE movieExec
 SET netWorth = OldTuple.netWorth
 WHERE cert# = NewTuple.cert#

Creating and naming the trigger

Triggers
• Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
 OLD ROW AS OldTuple,
 NEW ROW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
 UPDATE movieExec
 SET netWorth = OldTuple.netWorth
 WHERE cert# = NewTuple.cert#

This is the triggering event:
Update

Attribute
Table

Triggers
• Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
 OLD ROW AS OldTuple,
 NEW ROW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
 UPDATE movieExec
 SET netWorth = OldTuple.netWorth
 WHERE cert# = NewTuple.cert#

The referencing gives names
OLD ROW and NEW ROW are

defined with the obvious meanings

Triggers
• Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
 OLD ROW AS OldTuple,
 NEW ROW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
 UPDATE movieExec
 SET netWorth = OldTuple.netWorth
 WHERE cert# = NewTuple.cert#

OLD ROW is the old value of the
tuple, NEW ROW is the new value

of the tuple

Triggers
• Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
 OLD ROW AS OldTuple,
 NEW ROW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
 UPDATE movieExec
 SET netWorth = OldTuple.netWorth
 WHERE cert# = NewTuple.cert#

Here we decide whether we want
the action to be performed once or

for each row separate

Triggers
• Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
 OLD ROW AS OldTuple,
 NEW ROW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
 UPDATE movieExec
 SET netWorth = OldTuple.netWorth
 WHERE cert# = NewTuple.cert#

WHEN is the condition
(like an if clause)

Triggers
• Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
 OLD ROW AS OldTuple,
 NEW ROW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
 UPDATE movieExec
 SET netWorth = OldTuple.netWorth
 WHERE cert# = NewTuple.cert#

This is the conditional action:

An SQL statements that refers to the previous
value of the tuple

Triggers
• Trigger condition:

• Can use "After" or "Before"

• There is another option, "Instead", that is used with
views

Triggers
• Trigger condition:

• Triggering events can be:

• UPDATE

• INSERT

• DELETE

• OF clause is optional for updates and not possible for
INSERT and DELETE

• Because it would not make any sense

Triggers
• WHEN clause

• Is optional, but supplements the AFTER clause

Triggers
• SQL statements:

• There can be any number of SQL statements,
bracketed by BEGIN … END

• Separated by semi-colons

Triggers
• If the triggering event is an update, there is going to be an

old and a new value of the tuple

• We give them names in

• OLD ROW AS

• NEW ROW AS

• If the update is a delete, we only have an old tuple:

• OLD ROW AS

• If the update is an insert, then we only have a new tuple:

• NEW ROW AS

Triggers
• Statement level versus row level trigger

• Statement level: default or FOR EACH STATEMENT

• Executed once independent of the number of rows
affected (zero, one, many, all)

• Cannot have OLD ROW or NEW ROW but

• OLD TABLE AS oldstuff

• NEW TABLE AS newstuff

• Row level: FOR EACH ROW

• allows using OLD ROW and NEW ROW

Triggers
• Example

• Assume we want the average net worth of movie
executives to drop below $500,000.—

• Could use an assertion, but that would just result in our
inability to insert low net worth executives

• But could have several statements that allow us to
insert, delete, and change net worth

• We then want to refuse such a block statement only
if afterwards the condition is not true

Triggers
• Example (continued):

• We need to write one trigger for all modifications

• But we only want to check after we made our
modifications (and can still roll back to the previous
state)

Triggers
CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING
 OLD TABLE AS oldStuff
 NEW TABLE AS newStuff
FOR EACH STATEMENT
 WHEN (500000 > SELECT(AVG(networth) FROM MovieExec;)
BEGIN
 DELETE FROM MovieExec
 WHERE (name, address, cert%, networth) IN newStuff;
 INSERT INTO MovieExec
 (SELECT * FROM oldStuff);
END

Triggers
CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING
 OLD TABLE AS oldStuff
 NEW TABLE AS newStuff
FOR EACH STATEMENT
 WHEN (500000 > SELECT(AVG(networth) FROM MovieExec;)
BEGIN
 DELETE FROM MovieExec
 WHERE (name, address, cert%, networth) IN newStuff;
 INSERT INTO MovieExec
 (SELECT * FROM oldStuff);
END

After means check after
statement has executed

This is the version for update

Triggers
CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING
 OLD TABLE AS oldStuff
 NEW TABLE AS newStuff
FOR EACH STATEMENT
 WHEN (500000 > SELECT(AVG(networth) FROM MovieExec;)
BEGIN
 DELETE FROM MovieExec
 WHERE (name, address, cert%, networth) IN newStuff;
 INSERT INTO MovieExec
 (SELECT * FROM oldStuff);
END

This is the version for
update.

We are creating a statement
level trigger, so we give
names to the new and the
old table contents

Triggers
CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING
 OLD TABLE AS oldStuff
 NEW TABLE AS newStuff
FOR EACH STATEMENT
 WHEN (500000 > SELECT(AVG(networth) FROM MovieExec;)
BEGIN
 DELETE FROM MovieExec
 WHERE (name, address, cert%, networth) IN newStuff;
 INSERT INTO MovieExec
 (SELECT * FROM oldStuff);
END

When checks whether the
condition is violated

Triggers
CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING
 OLD TABLE AS oldStuff
 NEW TABLE AS newStuff
FOR EACH STATEMENT
 WHEN (500000 > SELECT(AVG(networth) FROM MovieExec;)
BEGIN
 DELETE FROM MovieExec
 WHERE (name, address, cert%, networth) IN newStuff;
 INSERT INTO MovieExec
 (SELECT * FROM oldStuff);
END

In which case we execute
two sql statements,
bracketed by BEGIN and
END

Triggers
CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING
 OLD TABLE AS oldStuff
 NEW TABLE AS newStuff
FOR EACH STATEMENT
 WHEN (500000 > SELECT(AVG(networth) FROM MovieExec;)
BEGIN
 DELETE FROM MovieExec
 WHERE (name, address, cert%, networth) IN newStuff;
 INSERT INTO MovieExec
 (SELECT * FROM oldStuff);
END

The first statement deletes
all contents from MovieExec
as it stands now, i.e. after the
update

Triggers
CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING
 OLD TABLE AS oldStuff
 NEW TABLE AS newStuff
FOR EACH STATEMENT
 WHEN (500000 > SELECT(AVG(networth) FROM MovieExec;)
BEGIN
 DELETE FROM MovieExec
 WHERE (name, address, cert%, networth) IN newStuff;
 INSERT INTO MovieExec
 (SELECT * FROM oldStuff);
END

The second statement then
creates

Triggers
• A common use of triggers is to fix up inserted values

• Example:

• Movies(title, year, length, genre,
studioName, producerC#)

• Write a trigger that changes a year value of NULL to
the current year

• YEAR(CURDATE)

Triggers

CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
 NEW ROW AS newRow
 NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR(CURDATE);

Triggers
• We need to be able to refer to

• an attribute of the inserted row

• the table in which we want to change a value

• CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
 NEW ROW AS newRow
 NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR(CURDATE);

Triggers

CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
 NEW ROW AS newRow
 NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR(CURDATE);

We check before we
actually do the update

Triggers

CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
 NEW ROW AS newRow
 NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR(CURDATE);

We have to refer to the row
AND to the table

Triggers

CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
 NEW ROW AS newRow
 NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR(CURDATE);

This is a row level trigger,
not a statement level trigger

Triggers

CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
 NEW ROW AS newRow
 NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR(CURDATE);

The when clause refers to
the inserted row BEFORE it
is inserted

Triggers

CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
 NEW ROW AS newRow
 NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR(CURDATE);

We check before we
actually do the update

Triggers

CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
 NEW ROW AS newRow
 NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR(CURDATE);

We then change with 'SET'
the value of the year.
This is SQL to change a
variable

Triggers
MySQL peculiarities:

MySQL does NOT have referencing.
Instead use NEW and OLD

Triggers
• Problems

• In the employee database, create a table employees_audit

• employees_audit(rid, emp_no, last_name,
change_date, action)

• rid: autoincrement

• emp_no non-null integer

• last_name non-null VARCHAR(50)

• changedat a datetime value with default NULL

• action a varchar value with default NULL

Triggers
• Problem (continued)

• Basically, we create a record whenever we change
something in the employees table

• HINT: If you want to avoid loading the employees table
afterwards, you should disable automatic commits.

• Do a commit before you do anything

• And a roll-back afterwards

Triggers
• Problem (continued)

• After creating the table, create a trigger auditInsert that
on each insert into the employees table creates an
audit entry in employees_audit

• You do this before a row has been inserted

• You do this for each row

• You insert into the employees_audit table

• Use SET syntax

• and use NOW() for the time stamp

Triggers
• Create a fictitious employee with high emp_no

• Change something about this employee with an update

• Check what happened to employee_audit

Triggers
• Solution

CREATE
 TRIGGER before_employee_update
 BEFORE UPDATE ON employees
 FOR EACH ROW
 INSERT INTO employee_audit
 SET action = 'update' ,
 employeeNumber = OLD.emp_no,
 lastname = OLD.last_name ,
 changedate = NOW();

Triggers
• Problem (continued)

• You can check that this does not trigger anything, since
we are not updating

INSERT INTO employees VALUES (500000, '1980-12-01',
'Friedrich', 'Chopin', 'M', '2020-03-01');

Triggers
UPDATE employees
SET
 hire_date = '2020-02-01'
WHERE
 emp_no = 500000;

Triggers
• This should have triggered an action.

• Check your result panel (below) in the MySQL workbench
to insure that you did not have a typo in your trigger

• If you had one, just drop the trigger and redefine it.

• DROP TRIGGER before_employee_update;

• Now you can check the audit table:

MySQL Triggers
• If a trigger has more than a single statement:

• you need to change the delimiter away from the
standard semi-colon to something else and back

DELIMITER $$
 …

DELIMITER ;

MySQL Triggers
• If your trigger has multiple statements:

• Use the BEGIN … END construct

• Within the construct, you can then use the standard
delimiter

MySQL Triggers
• Recall that instead of WHEN, MySQL has a different

construct:

• IF … THEN … ELSEIF … THEN … END IF;

• IF … THEN … END IF;

Triggers
• In the employees database:

• Create a trigger that checks if the hire date is NULL.

• If this is true, set this date to the current date

• The current date is given by NOW()

• Also, instead of referencing you need to use OLD or NEW

MySQL Triggers
• Solution

• DELIMITER $$
CREATE TRIGGER hireDate
BEFORE INSERT ON employees
FOR EACH ROW
BEGIN
 IF NEW.hire_date IS NULL THEN
 SET NEW.hire_date = NOW();
 END IF;

END $$

DELIMITER ;

Triggers
• And now you do a rollback or you reload the employees

database table

