Transactions
Stored Procedures
Triggers

Thomas Schwarz, SJ

Transactions

Transactions

e Databases have to process many operations in parallel

 This means some support for inter-process
communication

e Usually provided by locking
e DBMS differ in what they provide
e Serializability:

e All transactions appear to have been executed one
after the other

ACID

Atomicity: transactions is treated as a single, indivisible
unit of work

Consistency: If the DB is consistent before, it is
consistent afterwards

|Isolation: Concurrent transactions do not interfere with
each others

Durability: Once a transaction is committed, its effects are
permanent.

Transactions

* Atomicity
A single query is never interrupted:
e Example:

* A transfer of money from one account to another
IS executed completely or not at all

 Both accounts have changed or none

Transactions

e [ransaction

A group of SQL statements that are all processed in the
order given or not at all

e SQL:
e START TRANSACTION
e either
e COMMIT
e ROLLBACK

Transactions

* Read only transactions

By declaring a transaction as read-only, SQL can
usually perform it quicker

e SET TRANSACTION READ ONLY;
e SET TRANSACTION READ WRITE;

Transactions

* Dirty Reads:

* Reading a record from an update that will be rolled-back
e Are dirty reads bad?

* Depends

e Sometimes, it does not matter, and we do not want the
DBMS spend time on making sure that there are no
dirty reads

e Sometimes, a dirty read can absolutely mess up things

e Selling the same commodity to two customers, ...

Transactions

e SQL Isolation Levels:
e Allow dirty reads:
e SET TRANSACTION READ WRITE
e SET ISOLATION LEVEL READ UNCOMMITTED

Transactions

e SQL Isolation Levels:
* Allow reads only of committed data:
e SET TRANSACTION READ WRITE
e SET ISOLATION LEVEL READ COMMITTED

Transactions

e SQL Isolation Levels:

e Disallow dirty reads, but insure that the reads are
consistent:

e SET TRANSACTION READ WRITE
e SET ISOLATION LEVEL READ REPEATABLE READ

Transactions

e SQL Isolation Levels:
e Serializability (default):
e SET TRANSACTION READ WRITE

e SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE

MySQL Transactions

e MySQL automatically wraps SQL statements into
transactions

e Control behavior with SET autocommit = OFF;
 EXxplicit transactions
e START TRANSACTION
e aliases: BEGIN, BEGIN WORK
e COMMIT
e ROLLBACK

MySQL Transactions

e Example: CREATE DATABASE banks;
USE banks;
DROP TABLE IF EXISTS users;

CREATE TABLE users (
1d INT PRIMARY KEY AUTO INCREMENT,
name CHAR (30) NOT NULL,
emall CHAR(30)

) ;

START TRANSACTION;
INSERT INTO users (name)
VALUES ('Thomas Schwarz');

UPDATE users
SET email = 'thomas.schwarzl@marquette.edu';

MySQL Transactions

e Open up a new window:

mysql> USE banks;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> SELECT x FROM users;
Empty set (0.00 sec)

mysql>

* Transaction not committed, cannot see anything

MySQL Transactions

e |n the first session:

® SELECT * FROM users;

e Shows the row:

® ResultGrid 1§ 4% FilterRows: Q Edit: |
id name email
1 Thomas Schwarz thomas.schwarz@marquette.edu

HULL [HULL HULL

MySQL Transactions

e |n the first session:

° COMMIT;

e (Go back to the second session:

mysql> SELECT * FROM users;
Empty set (0.00 sec)

mysql> SELECT x FROM users;

o o

| id | name | email

-t -t -
v o

+ — +— +

1 | Thomas Schwarz | thomas.schwarz@marquette.edu

I
1 row in set (0.00 sec)

MySQL Transactions

e |f we had done a

ROLLBACK;

e the table would be empty

Stored Procedures

Thomas Schwarz, SJ

Stored Routines

e Stored Routine:

e SQL statement or set of SQL statements that can be
stored in the database server

e Can be a function

e Can be a stored procedure

MySQL Stored Procedures

e Delimiters

e Semicolon acts as a delimiter in SQL and Procedures

* Need to change delimiter
e Can be set to anything PELIMITER 59

e E.g. double dollar sign

o Afterwards reset it DELIMITER ;

MySQL Stored Procedures

* \We can generate stored procedures from within MySQL
workbench

 Click on Stored Procedures at the end of the schema
and select create stored procedure

~ PN W A L

» =1 Indexes
» % Foreign Keys
» [Triggers
» =/ salaries
p = titles
» 1 Views

7 Stored ProGes
Y 2 Create Stored Procedure...

myproc
™5 Functions Refresh All

sys

MySQL Stored Procedures

* \We can generate stored procedure using SQL

use employees; Keywords are CREATE
PROCEDURE

DELIMITER $$S

CREATE PROCEDURE myproc ()
BEGIN
SELECT ~*
FROM employees
WHERE first name LIKE ‘th%’;
END

S S

DELIMITER ;

MySQL Stored Procedures

* \We can generate stored procedure using SQL

use employees;

Need to give it a name

DELIMITER $$S

CREATE PROCEDURE myproc ()
BEGIN
SELECT ~*
FROM employees
WHERE first name LIKE 'th%';
END

S S

DELIMITER ;

MySQL Stored Procedures

* \We can generate stored procedure using SQL

use employees;

Can have arguments

DELIMITER $$S

CREATE PROCEDURE myproc ()
BEGIN
SELECT ~*
FROM employees
WHERE first name LIKE 'th%';
END

S S

DELIMITER ;

MySQL Stored Procedures

* \We can generate stored procedure using SQL

use employees;

BEGIN END encapsulate

a SQL query terminated
DELIMITER $S with ;

CREATE PROCEDURE myproc ()
BEGIN
SELECT ~*
FROM employees
WHERE first name LIKE 'th%';
END

S S

DELIMITER ;

MySQL Stored Procedures

* \We can generate stored procedure using SQL

use employees;

Don't forget to change

DELIMITER SS the delimiter back to ;

CREATE PROCEDURE myproc ()
BEGIN
SELECT *
FROM employegd
WHERE firspfname LIKE 'ths';
END

S 3

DELIMITER ;

MySQL Stored Proc

e We can call a stored
procedure

e From within the
workbench, by clicking on
it

e Using CALL
procedureName()

5

11
12 DELIMITER ;
13
14 e - CALL myproc();
15
1005 Silad 5414
Result Grid { Filter Rows:

CREATE PROCEDURE myproc()

emp_no birth_date

11407
11422
11825
12158
12403
12565
12569
12594
13212
13356
13463
13870
14159
14479
14631
14845
15000

1962-01-11
1956-06-03
1961-12-12
1959-07-26
1958-06-08
1964-05-19
1962-04-19
1958-09-25
1963-08-03
1961-04-24
1954-08-29
1952-04-25
1953-11-12
1964-08-22
1963-01-18
1962-08-10
1959-11-29

BEGIN

edures

Q

first_name last_name

r

Thanasis
Thanasis
Theirry
Theirry
Thodoros
Theron
Thodoros
Thanasis
Thodoros
Thodoros
Theron
Theirry
Theron
Thodoros
Theirry
Theron
Thanasis

Thebaut
Ghalwash
Kuzuoka
Masada
Samarati
Mullainathan
Lundstrom
Ranst

Boyle
Lukaszewicz
Berstel
Kirkerud
Marrakchi
Suessmith
Pulkowski
Homond
Bahi

Export: EH

gender hire_date

1991-05-06
1990-12-04
1987-05-02
1996-02-11

1988-03-19
1989-06-16
1991-10-15
1993-06-21
1990-04-19
1987-07-17
1988-01-26
1989-01-09
1994-06-22
1986-06-14
1994-06-10
1986-01-01

1988-03-27

MySQL Stored Procedures

* Procedure parameters have three types
e IN — input
e OUT — output
e INOUT — both input and output
 Procedure parameters have type

o Definition of parameter:

IN
OuT
INOUT

parameter

name type

MySQL Stored Procedures

e Example:
e Change a procedure

* You can use workbench by selecting the name of the
procedure and select 'alter procedure'

» 71 Indexes
» [Foreign Keys
» 1 Triggers
» =] salaries
p = titles
» 7 Views
v [Stored Procedures

Copy to Clipboard >

T FunC gand to SQL Editor >
S sys
Create Stored Procedure...

Alter Stored Procedure...

Drop Stored Procedure...

Refresh All

MySQL Stored Procedures

¥ Query1 # employees /” myproc - Routine #~ myproc - Routine

e Changing a 5 -

E@H Q1=

roced | l re 1 e CREATE DEFINER='root'@ localhost’ PROCEDURE ‘myproc' (IN beg VARCHAR(20))

2 BEGIN
3 SELECT *
4 FROM employees
5 WHERE first_name LIKE CONCAT(beg,) OR last_name LIKE CONCAT(beg,)

! ft 6 END
I lt [I [
100% $[1
Routine
Action Output <
Time Action Response

Changes applied

20:48:36 Apply changes to myproc
3057 row(s) returned

Q7
O 8 20:49:35 CALL myproc('Th")

Apply Revi

Duration / Fetch Time

0.011 sec / 0.093 sec

MySQL Stored Procedures

e Changing a procedure:

e Combine with DROP and CREATE

MySQL Stored Procedures

Single Parameter

DELIMITER S$$S
CREATE PROCEDURE partial name(IN beg VARCHAR(20))
BEGIN

SELECT first name, last name, gender

FROM employees

WHERE first name LIKE CONCAT (beg, '$') OR last name LIKE
CONCAT (beg, 'S%'):;
END

DELIMITER ;

CALL partial name('dan');

MySQL Stored Procedures

DELIMITER S$$S
CREATE PROCEDURE partial name(IN beg VARCHAR(20))
BEGIN

SELECT first name, last name, gender

FROM employees

WHERE first name LIKE CONCAT (beg, '$') OR last name LIKE
CONCAT (beg, 'S%'):;
END

DELIMITER ; Have not yet discussed

variables

CALL partial name('dan');

MySQL Stored Procedures

e TASK

 Write a stored procedure that takes as input the first
name and the last name of a current employee.

e |t then returns:

 The first and last name, gender, employee number,
department, and last salary of the person (if it is in
the database)

HINT

e |f you are working with MySQL Workbench, it is /ess

frustrating to define and make changes in the Stored
Procedures tab on the left.

e The delimiter statements does not work too well

» [%1 Triggers
p = titles
» 1 Views
v 5 Stored Procedures
Create Stored Procedure...
] avg_salary
.| data Refresh All

| partial_name

MySQL Stored Procedures

DELIMITER S$S

CREATE PROCEDURE data (IN first VARCHAR(14), IN last VARCHAR(1l6))

BEGIN
SELECT e.first name, e.last name,

s.salary

FROM employees e, departments d, salaries s, dept emp de
WHERE e.emp no = de.emp no AND de.dept no = d.dept no

AND s.emp no = e.emp no AND s.to date = '9999-01-01"

AND e.first name = first AND e.last name = last;

e.gender, d.dept name,

END

DELIMITER ;

MySQL Stored Procedures

e TASK

 Write a stored procedure that takes as input the first
name and the last name of a current or past employee.

e |t then returns:

 The first and last name, and average salary of the
person

MySQL Stored Procedures

CREATE PROCEDURE "avg salary (
IN first VARCHAR(12),
last VARCHAR(16)
)
BEGIN
SELECT e.first name, e.last name, AVG(s.salary)
FROM employees e, salaries s
WHERE e.first name = first
AND e.last name = last
AND e.emp no = s.emp no;
END

MySQL Stored Procedures

e Using output variables

 |et's change the previous procedure to return the
average salary

e We need to use the SELECT ... INTO ... construct

MySQL Stored Procedures

CREATE PROCEDURE avg_salary(
IN first VARCHAR(12),
last VARCHAR(106),
out average salary DECIMAL(10,2) This is our output

)
BEGIN

SELECT AVG(s.salary)
INTO average salary
FROM employees e, salaries s
WHERE e.first name = first
AND e.last name = last
AND e.emp no = s.emp no;
END

MySQL Stored Procedures

CREATE PROCEDURE avg salary(
IN first VARCHAR(12),
last VARCHAR(106),
out average salary DECIMAL(10,2) two digits after

) comma

BEGIN

SELECT AVG(s.salary)

INTO average salary

FROM employees e, salaries s

WHERE e.first name = first
AND e.last name = last
AND e.emp no = s.emp no;

Type is Decimal with

END

MySQL Stored Procedures

CREATE PROCEDURE avg salary(
IN first VARCHAR(12),
last VARCHAR(106),
out average salary DECIMAL(10,2)

)

BEGIN
SELECT AVG(s.salary) This is how we set the
INTO average salary value

FROM employees e, salaries s
WHERE e.first name = first
AND e.last name = last
AND e.emp no = s.emp no;
END

MySQL Stored Procedures

e How do we call this?

e Easiest is using the lightning symbol in the MySQL
work-bench

» = titles

» 51 Views

v (751 Stored Procedures
B avg_salary

data

partial_name

1 Functions

MySQL Stored Procedures

* This gives you an interactive window

/ O ® Call stored procedure employees.avg_salary

NER=] 'S Enter values for parameters of your procedure and click <Execute> to create an ‘t ARCH
SQL editor and run the call:

AVG(s.s

erage_s first Isaac [IN] VARCHAR(12)

ployees last | Schwartzbauer | [IN] VARCHAR(16)

W firsts

Cancel ——

MySQL
Stored
Procedures

Result grid
shows the
value

e $75262.06

But you can
also see how
to call the
procedure as
well.

¥ Query1 J~ avg_salary - Routine J~ avg_salary - Routine J~ avg_salary - Routine §¥ avg_salary
«}\’ y. £, [2w ' . . » _
BH ZFAQC B @ pon'tLimi B %« sQ@®

1l e Iset @average_salary = 0;

2 ® call employees.avg_salary(
3 e select @average_salary;

4

100 RS d:4
Result Grid i 4¥ Filter Rows: Q

@average_salary
75262.06

Export:

, @average_salary);

P X

MySQL Stored Procedures

e First, we need to define a variable

34 o | SET @avgsal = 0;

35 ¢ | CALL avg_salary(. , @avgsal);
36 ¢ SELECT @avgsal;

37

Result Grid | 43 Filter Rows: Q Export:

@avgsal
75262.06

MySQL Stored Procedures

e Defining variables

e Variables start with an ampersand @myvar

e You can enclose the name with * or to use

other characters than alpha-numeric and '$'
e |nitialized with SET

* Assignment is with integer, decimal, floating-point,
binary or non-binary string, or NULL

e Can use CAST if necessary

MySQL Stored Procedures

e \We call the function with

SET davgsal = 0;
CALL avg salary('Isaac', 'Schwartzbauer',K (@avgsal);
SELECT (@avgsal;

e Notice how

* we include the output variable in the call

e we use SELECT to access the value of the variable

MySQL Stored Procedures

e TASK

 Write a stored procedure that takes as input the first
name and the last name of a current or past employee.

e |t then returns:

e The employee number

e Call it from the query tab

MySQL Stored Procedures

Solution

CREATE DEFINER= root @ localhost"
"employee number (
IN first VARCHAR(12),
IN last VARCHAR (1o0),
OUT empl numb INT
)
BEGIN
SELECT emp no
INTO empl numb
FROM employees
WHERE first name = first
AND last name last;

END

PROCEDURE

MySQL Stored Procedures

e Solution

set @empl numb = 0;

call employees.employee number (
'Isaac',
'Schwartzbauer',
@empl numb

) ;

select @empl numb;

MySQL Functions

A procedure can have more than one output
 Functions have none or one output

e MySQL functions return exactly one value

MySQL Functions

 We can use the MySQL workbench by clicking on
Functions in the scheme pane

e Just below stored procedures

 Or can use a query

* Function values are obtained through a SELECT
statement

¢ select employees.f avg(101010);

MySQL Functions

e Example: Definition of
| a function
CREATE FUNCTION) £ avg (p emp no INTEGER)

RETURNS decimal (10, 2)
READS SQL DATA
BEGIN
DECLARE v avg salary DECIMAL (10,2);
SELECT AVG(salary)
INTO v avg salary
FROM salariles s
WHERE s.emp no = p emp noj;
RETURN v avg salary;
END

MySQL Functions

e Example:

CREATE FUNCTION

RETURNS decimal (10,
READS SQL DATA
BEGIN
DECLARE v avg salary DECIMAL (10,2);
SELECT AVG (salary)
INTO v avg salary
FROM salaries s
WHERE s.emp no = p emp noj;
RETURN v avg salary;
END

(p emp no INTEGER)

MySQL Functions

Name and type of input
variable

P emp no INTEGER

e Example:

1

CREATE FUNCTION £ avg
RETURNS decimal (10, 2)
READS SQL DATA
BEGIN
DECLARE v avg salary DECIMAL (10,2);
SELECT AVG (salary)
INTO v avg salary
FROM salariles s
WHERE s.emp no = p emp noj;
RETURN v avg salary;
END

MySQL Functions

Keyword Returns is needed
plus specification of return

e Example: value type

(p”emp no INTEGER)

BEGIN

DECLARE v avg salary DECIMAL (10,2);
SELECT AVG(salary)
INTO v avg salary
FROM salaries s
WHERE s.emp no = p emp noj;
RETURN v avg salary;
END

MySQL Functions

Describes behavior of the
function

e Example:

CREATE FUNCTION f avg g#6 emp no INTEGER)
) L) |\ ala Raat= (10

DECLARE v avg salary DECIMAL (10,2);
SELECT AVG (salary)
INTO v avg salary
FROM salaries s
WHERE s.emp no = p emp noj;
RETURN v avg salary;
END

MySQL Functions

DETERMINISTIC:

* always produces the same result for the same parameter
NO SQL:

* function has no SQL statements

READS SQL DATA

e contains statements that read via SQL, but does not
modify the database

MODIFIES SQL DATA

e contains statements that write (e.g. inserts)

MySQL Functions

° Example: Body of the function

CREATE FUNCTION 4Fdvg (p emp no INTEGER)

DE' A SQ ODATA
BEGIN
PECLARE v avg salary DECIMAL(10,2);

SELECT AVG(salary)
INTO v avg salary
FROM salariles s
WHERE s.emp no = p emp noj;

RETURN v _avg salary;

MySQL Functions

® Examp|e- Here we define a variable to be used in
' several statements

CREATE FUNCTION 4Fdvg (p emp no INTEGER)

DECLARE v avg salary DECIMAL (10,2);

AV V
INTO v avg salary
FROM salaries s
WHERE s.emp no = p emp noj;

RETURN v _avg salary;

MySQL Functions

° Examp|e- The variable has type Decimal(10,2) to
' represent currency values

CREATE FUNCTION 4Fdvg (p emp no INTEGER)

DECLARE v avg salary DECIMAL (10,2);

AV \/
INTO v avg salary
FROM salariles s
WHERE s.emp no = p emp noj;
RETURN v avg salary;
END

MySQL Functions

° Examp|e: The SELECT ... INTO ... clause updates

the value of v_avg_salary

CREATE FUNCTION 4Fdvg (p emp no INTEGER)

RETURNS decipe® (10, 2)
READS SQLAIATA
BEGIN

DECIMAL (10, 2

SELECT AVG (salary)
INTO v avg salary
FROM salariles s

WHERE s.emp no P emp no;

MySQL Functions

o Example: A function has to return a value

CREATE FUNCTION f_
RETURNS decimal (10
READS SQL DATA
BEGIN

MySQL Functions

 Functions and procedures can have more than one select
value

* Find the last salary of an employee given by first and
last name

 Query 1: Find the last from_date in salaries for the
employee

e \We store it In a variable

e Query 2: Return the corresponding salary

CREATE FUNCTION f latest salary(p first name

RETURNS decimal (10, 2)
READS SQL DATA

BEGIN

DECLARE v max from date date;
DECLARE v last salary DECIMAL(10,2);

SELECT
MAX (from date)
INTO v _max from date
FROM employees e
JOIN salaries s ON e.emp no =
WHERE e.first name =
AND e.last name =

S.emp no
p first name
p last name;

SELECT
s.salary
INTO v last salary
FROM employees e
JOIN salaries s ON e.emp no =
WHERE e.first name =
AND e.last name =
AND s.from date =

S.emp no
p first name
p last name
v _max from date;

RETURN v last salary;

END

VARCHAR (12), p last name VARCHAR(16))

CREATE FUNCTION f latest salary(p first name

RETURNS decimal (10, 2)
READS SQL DATA

BEGIN

DECLARE v max from date date;

VARCHAR (12), p last name VARCHAR(16))

DECLARE v last salary DECIMAL(10,2);

SELECT
MAX (from date)
INTO v _max from date
FROM employees e
JOIN salaries s ON e.emp no =
WHERE e.first name =
AND e.last name =

S.emp no
p first name
p last name;

SELECT
s.salary
INTO v last salary
FROM employees e
JOIN salaries s ON e.emp no =
WHERE e.first name =
AND e.last name =
AND s.from date =

S.emp no
p first name
p last name
v _max from date;

RETURN v last salary;

END

Declare a variable of

type date to contain the
last contract to-date

CREATE FUNCTION f latest salary(p first name VARCHAR(12Z2), p last name VARCHAR(16))
RETURNS decimal (10, 2)
READS SQL DATA

BEGIN
DECLARE v max from date date;
DECLARE v last salary DECIMAL(10,2);

Declare a variable of

SELECT MAX (from date) type Decimal for the
INTO v max from date salary
FROM employees e
JOIN salaries s ON e.emp no = s.emp no
WHERE e.first name = p first name

AND e.last name = p last name;

SELECT

s.salary
INTO v last salary
FROM employees e

JOIN salaries s ON e.emp no = s.emp no
WHERE e.first name = p first name

AND e.last name = p last name

AND s.from date = v max from date;

RETURN v last salary;
END

CREATE FUNCTION f latest salary(p first name VARCHAR(12Z2), p last name VARCHAR(16))

RETURNS decimal (10, 2)
READS SQL DATA

BEGIN

DECLARE v max from date date;
DECLARE v last salary DECIMAL(10,2);

SELECT MAX (from date)
INTO v _max from date
FROM employees e

JOIN salaries s ON e.emp no = s.emp no
WHERE e.first name = p first name

AND e.last name = p last name;
SELECT

s.salary

INTO v last salary
FROM employees e

JOIN salaries s ON e.emp no = s.emp no
WHERE e.first name = p first name
AND e.last name = p last name

AND s.from date = v max from date;

RETURN v last salary;

END

Determine the last
contract from_date for

an employee with given
first and last name

CREATE FUNCTION f latest salary(p first name VARCHAR(12Z2), p last name VARCHAR(16))
RETURNS decimal (10, 2)
READS SQL DATA

BEGIN
DECLARE v max from date date;
DECLARE v last salary DECIMAL(10,2);

and load it into the

SELECT MAX (from date) variable
INTO v_max from date v_max_from_date
FROM employees e
JOIN salaries s ON e.emp no = s.emp no
WHERE e.first name = p first name

AND e.last name = p last name;

SELECT

s.salary
INTO v last salary
FROM employees e

JOIN salaries s ON e.emp no = s.emp no
WHERE e.first name = p first name

AND e.last name = p last name

AND s.from date = v max from date;

RETURN v last salary;
END

CREATE FUNCTION f latest salary(p first name VARCHAR(12Z2), p last name VARCHAR(16))
RETURNS decimal (10, 2)
READS SQL DATA

BEGIN
DECLARE v max from date date;
DECLARE v last salary DECIMAL(10,2); Second query:

SELECT MAX (from date)
INTO v _max from date

Find the corresponding

FROM employees e amount
JOIN salaries s ON e.emp no = s.emp no
WHERE e.first name = p first name
AND e.last name = p last name;
SELECT
s.salary

INTO v last salary
FROM employees e

JOIN salaries s ON e.emp no = s.emp no
WHERE e.first name = p first name

AND e.last name = p last name

AND s.from date = v max from date;

RETURN v last salary;
END

CREATE FUNCTION f latest salary(p first name VARCHAR(12Z2), p last name VARCHAR(16))
RETURNS decimal (10, 2)
READS SQL DATA

BEGIN
DECLARE v max from date date;
DECLARE v last salary DECIMAL(10,2);

And finally return this

SELECT MAX (from date)

INTO v _max from date value
FROM employees e
JOIN salaries s ON e.emp no = s.emp no
WHERE e.first name = p first name
AND e.last name = p last name;
SELECT
s.salary

INTO v last salary
FROM employees e
JOIN salaries s ON e.emp no
WHERE e.first name = p first gfame
AND e.last name = p lg@gf name
AND s.from date = vAMax from date;

I
0
'O
S
O

RETURN v last salary;
END

MySQL Functions

* Why do we need functions?
e Procedures can not be embedded in a select statement

e But functions can

MySQL Variables

* MySQL has three types of variables
 Local: Scope isina BEGIN ... END block
e Use DECLARE and no ampersand

* Session

e Starts and ends with making a connection to the
database

* One session per current user
e Use SET @variable = NULL
e Global

MySQL Variables

e (Global variables
e Survives disconnection
* Needs to be system variables

e E.g. .max_connections(), .max_join_size()

e SET GLOBAL max connections = 1000;

® SET (@W@global.max connections = 1000;

MySQL Variables

e Try it out
e Set max connections to 1

 Then try another connection in MySQL workbench

Conditions

e MySQL has an IF statement
e MySQL has a CASE statement
e My SQL has a CASE expression

e which is the easiest

CASE attribute
WHEN ... THEN ...
ELSE ..

END

CASE Statement

e Example

 Expanding gender

SELECT first name, last name, CASE
WHEN 'M' THEN 'male'
ELSE '"female'
END AS gender

FROM employees

WHERE emp 1d = p emp 1d;

CASE Statement

e Example:

e Select employee data, including whether they are
managers or not

e Information is in employees and in dept_manager table

 One possibility: Use a LEFT JOIN

e Also: limit queries to a range of emp_no chosen to
have managers and no-managers in it

CASE Statement

SELECT e.emp no,
e.first name,
e.last name,
dm.emp no
FROM employees e LEFT JOIN dept manager dm
ON e.emp no = dm.emp no
WHERE e.emp no BETWEEN 109990 AND 111000;

CASE Statement

SELECT e.emp no,
e.first name,
e.last name,
dm. Sp_No emp_no first_name last_name emp_no
FROM employees e LEE" » 10090 Rosaie parit ler dm

Result Grid { 4% Filter Rows: Q

109991 Jinxi Reistad [HULL
109992 Cheong Heering (HULL
ON <. emp_] 109993 Danel Furudate [T
109994 Guangming Takkinen [II'4 o
WHERE e d emp no BE TWE] 109995 Constantijn Anido [HULL : O O O 4
T 109996 Dines Gelosh (HULL |
109997 Miquel Borovoy [

109998 Mizuhito Heping (HULL
109999 Janche Coombs [
110000 Supot Herath (HULL |
110022 Margareta Markovitch 110022
110039 Vishwani Minakawa 110039

110085 Ebru Alpin 110085
110114 Isamu Legleitner 110114
110183 Shirish Ossenbr... 110183

110228 Karsten Sigstam 110228

CASE Statement

e Because this is a left join, we
match the emp_no, but keep
both of them

Result Grid | 4% Filter Rows: Q

emp_no first_name last_name emp_no

109990 Rosalie Parfitt [HULL |

. 109991 Jinxi Reistad [HULL |

e the second one is for 108992 Cheong Heering [
109993 Danel Furudate [

109994 Guangming Takkinen [T

dept_manager o o e

109996 Dines Gelosh HULL |

. 109997 Miquel Borovoy [T

e This means that we can use the 100998 Mzuhio _Hoping MO

110000 Supot Herath [HULL |

C aS e St at e m e n t 110022 Margareta Markovitch 110022

110039 Vishwani Minakawa 110039

110085 Ebru Alpin 110085
110114 Isamu Legleitner 110114
110183 Shirish Ossenbr... 110183

110228 Karsten Sigstam 110228

CASE Statement

SELECT e.emp no,
e.first name,
e.last name,
CASE
WHEN dm.emp no IS NOT NULL THEN 'manager'
ELSE 'employee'
END
FROM employees e LEFT JOIN dept manager dm
ON e.emp no = dm.emp no
WHERE e.emp no BETWEEN 109990 AND 111000;

CASE Statement

e The last column of the result
IS now the result of the
CASE expression

e The column name is bad, so
we change it with an AS
clause

Result Grid i

emp_no first_name

109990
109991
109992
109993
109994
109995
109996
109997
109998
109999
110000
110022
110039
110085
110114
110183
110228
110303

last_name
Rosalie Parfitt
Jinxi Reistad
Cheong Heering
Danel Furudate
Guangming Takkinen
Constantijn Anido
Dines Gelosh
Miquel Borovoy
Mizuhito Heping
Janche Coombs
Supot Herath
Margareta Markovitch
Vishwani Minakawa
Ebru Alpin
Isamu Legleitner
Shirish Ossenbr...
Karsten Sigstam
Krassimir Wegerle

Realilt 1R

¥ Filter Rows: Q

CASE

employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
manager
manager
manager
manager
manager
manager
manager

CASE Statement

SELECT e.emp no,
e.first name,
e.last name,
CASE
WHEN dm.emp no IS NOT NULL THEN 'manager'
ELSE 'employee'
END AS 'role'
FROM employees e LEFT JOIN dept manager dm
ON e.emp no = dm.emp no
WHERE e.emp no BETWEEN 109990 AND 111000;

CASE Statement

SELECT e.emp no,
e.first name,
e.last name,
CASE
WHEN dm.emp no IS I
ELSE 'employee'
END AS 'role'
FROM employees e LEFT JOIN de
ON e.emp no = dm.¢
WHERE e.emp no BETWEEN 10999l

Result Grid 1 ¥ Filter Rows:
emp_no first_name last_name
109990 Rosalie Parfitt
109991 Jinxi Reistad
109992 Cheong Heering
109993 Danel Furudate
109994 Guangming Takkinen
109995 Constantijn Anido
109996 Dines Gelosh
109997 Miquel Borovoy
109998 Mizuhito Heping
109999 Janche Coombs
110000 Supot Herath
110022 Margareta Markovitch
110039 Vishwani Minakawa
110085 Ebru Alpin
110114 Isamu Legleitner
110183 Shirish Ossenbrug...
110228 Karsten Sigstam
110303 Krassimir Wegerle
110344 Rosine Cools
110386 Shem Kieras
110420 Oscar Ghazalie
110511 DeForest Hagimont
110567 Leon DasSarma
110725 Peternela Onuegbe
110765 Rutger Hofmeyr
110800 Sanjoy Quadeer
110854 Dung Pesch

Q

role

employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
manager
manager
manager
manager
manager
manager
manager
manager
manager
manager
manager
manager
manager
manager
manager
manager

Export:

CASE Statement

e GOTCHA

e NULL and NOT NULL cannot be compared

e S0: this does NOT work

SELECT e.emp no,
e.first name,
e.last name,
CASE dm.emp no
WHEN NOT NULL THEN 'manager'
ELSE 'employee'
END AS 'role'
FROM employees e LEFT JOIN dept manager dm
ON e.emp no = dm.emp no
WHERE e.emp no BETWEEN 109990 AND 111000;

CASE Statement

e Result:

 Everyone is an employee because NOT NULL

comparison is never-ever true

Emp_no ursw_ndame

109990
109991
109992
109993
109994
109995
109996
109997
109998
109999
110000
110022
110039
110085
110114
110183
110228
110303
110344
110386
110420
110511

110567
110725
110765

Rosalie
Jinxi
Cheong
Danel
Guangming
Constantijn
Dines
Miquel
Mizuhito
Janche
Supot
Margareta
Vishwani
Ebru
Isamu
Shirish
Karsten
Krassimir
Rosine
Shem
Oscar
DeForest
Leon
Peternela
Rutger

lasc_ndine

Parfitt
Reistad
Heering
Furudate
Takkinen
Anido
Gelosh
Borovoy
Heping
Coombs
Herath
Markovitch
Minakawa
Alpin
Legleitner

Ossenbrug...

Sigstam
Wegerle
Cools
Kieras
Ghazalie
Hagimont
DasSarma
Onuegbe
Hofmeyr

roie

employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee
employee

CASE Statement

e MySQL has an IF expression
 Can have only one test

e Syntax is IF(condition, valiftrue, valiffalse)

CASE Statement

* |nside a stored procedure, we can use the case statement
to set a variable CREATE PROCEDURE GetDeliveryStatus(

IN pOrderNumber INT,
OUT pDeliveryStatus VARCHAR(100)
)
BEGIN
DECLARE waitingDay INT DEFAULT 0;
SELECT
DATEDIFF(requiredDate, shippedDate)
INTO waitingDay
FROM orders
WHERE orderNumber = pOrderNumber;

CASE
WHEN waitingDay = 0 THEN
SET pDeliveryStatus = 'On Time';
WHEN waitingDay >= 1 AND waitingDay <5 THEN
SET pDeliveryStatus = 'Late’;
WHEN waitingDay >= 5 THEN
SET pDeliveryStatus = 'Very Late';
ELSE
SET pDeliveryStatus = 'No Information’;
END CASE;

Transactions in Stored
Procedures

e Go back to the banks example

* Create a table checking

¢ DROP TABLE IF EXISTS checking;

CREATE TABLE checking (
1id INT PRIMARY KEY,
amount DECIMAL (28,2),
CONSTRAINT account holder exists
FOREIGN KEY (1d) REFERENCES users (1d)
ON DELETE CASCADE

) ;

Transactions in Stored
Procedures

 Create checking accounts:

INSERT INTO checking(id, amount)
SELECT 1d, 1000 FROM users WHERE name = 'Thomas Schwarz';

SELECT * from checking;

INSERT INTO checking(id, amount)
SELECT 1d, 1000 FROM users WHERE name = 'Dennis Brylow';

INSERT INTO checking(id, amount)
SELECT 1d, 100 FROM users WHERE name = 'Donald Trump';

Transactions in Stored
Procedures

DELIMITER //

CREATE PROCEDURE transfer (
IN sender 1d INT,
IN receiver id INT,
IN amount DECIMAL (10, 2)

)
BEGIN

DECLARE rollback_message VARCHAR (255) DEFAULT
'"Transaction rolled back: Insufficient funds';
DECLARE commit message VARCHAR(255) DEFAULT
'"Transaction committed successfully';

Transactions in Stored
START TRANSACTION; P rcced u reS

UPDATE checking
SET checking.amount = checking.amount - my amount
WHERE 1d = sender 1d;

UPDATE checking
SET checking.amount = checking.amount + my amount
WHERE 1d = receiver 1d;

IF (SELECT amount FROM checking WHERE 1d = sender 1d) < 0 THEN
ROLLBACK;
SIGNAL SQLSTATE '45000'
SET MESSAGE TEXT = rollback message;
ELSE
COMMIT,;
SELECT commit message AS 'Result';
END 1IFE7;
END //

DELIMITER ;

Transactions in Stored
Procedures

DELIMITER ;
SELECT * FROM checking;
CALL transfer(l,2,500.00);

SELECT * FROM checking;

Transactions in Stored
Procedures

* In the workbench, you can use the stored procedure flash
to execute the procedure

!jJ VITWD
| [P Stored Procedures

= Functions

| @ O Call stored procedure banks.transfer

Enter values for parameters of your procedure and click <Execute> to create
an SQL editor and run the call:

sender_id [IN] INT
ceiver_id [IN] INT |
aaaaa t (IN] DECIMAL(10,2) '

Transactions in Stored
Procedures

e Example:

° call banks.transfer (2, 1, 3000);

v RS AR AC AR A= STV L T INNZW VLRSIV T Tnrorwn)y "y gwrmawr s ll‘l,... ¥ IUIV\J, L= AR ASATL N LN) V.V IV OYw
x 69 13:41:26 call banks.transfer(2, 1, 3000) Error Code: 1644. Transaction rolled back: Insufficient funds 0.00095 sec

Constraints and
Triggers

Keys and Foreign Keys

e SQL Primary Key declaration
e Equivalent to NOT NULL and UNIQUE
 Creates an index, so lookup with key are faster
e SQL Foreign Key declaration
* |nsures that a value in a foreign table exists

e That value must be declared UNIQUE

Keys and Foreign Keys

e Two declarations in SQL

CREATE TABLE studio(
name CHAR(30) PRIMARY KEY,
address VARCHAR (255),
presC# INT REFERENCES MovieExec (cert#)

) ;

CREATE TABLE studio(
name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
presC# INT,
FOREIGN KEY (presC#) REFERENCES MovieExec (cert#)

) ;

Keys and Foreign Keys

 What happens if we try to insert into studio a president or
change a presC# whose certificate number does not
match a certificate number in movieExecs?

* What happens if we delete a row from movieExecs or
update a cert# in movieExecs

* (1) Reject modification.
e (2) Cascade operation

e (3) Set NULL

Keys and Foreign Keys

CREATE TABLE studio (
name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
presC# INT REFERENCES MovieExec (cert#)
ON DELETE SET NULL
ON UPDATE CASCADE

) ;

e |f we delete a movieExec tuple with a studio president,
then the presC# value in studio is replaced by NULL

* |f we change a movieExec tuple with a studio president,
then the presC# value gets changed as well

Keys and Foreign Keys

* A tuple with foreign key is "dangling” if the foreign key
does not exist

e Similarly, a tuple that does not participate in a join is
called dangling.

Keys and Foreign Keys

* A table with a foreign key needs to be populated first
e But there are examples of circular references

* Jo deal with them:
» Make the two insertions part of a single transaction

e Tells the DBMS to not check constraints until the transaction is
finished

e Can declare deferrable

 INITIALLY DEFERRED — check just before a transaction
commits

e |INITIALLY IMMEDIATE — check after each statement is
executed

Keys and Foreign Keys

CREATE TABLE studio (
name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
presC# INT UNIQUE
REFERENCES MovieExec (cert#)
DEFERRARLE INITIALLY DEFERRED

Keys and Foreign Keys

e (Can also give constraints names

* Then change is enforcement policy

SET CONSTRAINT myConstraint DEFERRED;

SET CONSTRAINT myConstraint IMMEDIATE;

Constraints on Attributes

e NOT NULL

Constraints on Attributes

e CHECK

e Enforces conditions on an attribute

CREATE TABLE movieExec (
name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
presC# INT REFERENCES MovieExec (cert#)
CHECK (presC# >= 100000

Constraints on Attributes

CREATE TABLE movieStar (
name VARCHAR (255) PRIMARY KEY;
address VARCHAR (255);
gender CHAR (1)
CHECK (gender IN ('F', '™M', 'X"))

Constraints on Attributes

CREATE TABLE parts (

part no VARCHAR (18) PRIMARY KEY,
description VARCHAR (40),

cost DECIMAL (10,2) NOT NULL CHECK (cost >= 0),

price DECIMAL(10,2) NOT NULL CHECK (price >= 0)

) ;
Code language: SQL (Structured Query Language) (sgl)

Constraints on Attributes

e Checks cannot be used to replace foreign keys

presC# INT CHECK
(presC# IN (SELECT cert# FROM movieExec)

* The check is only executed by the time the tuple is
inserted or changed

e |f movieExec changes, our table is NOT updated

 Also, NULL values would be rejected

Constraints on Tuples

 Tuple based checks are executed on Insertion and on
Update

 Checks do not trigger checks for relations mentioned in
checks

CREATE TABLE movieStar (
name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
gender CHAR(1),
birthdate DATE,
CHECK (gender = 'F' OR name NOT LIKE 'Ms.%')

Constraints on Tuples

e Attribute based checks are executed when
e Attribute is changed
 Tuple inserted

 Tuple based checks are executed when
* Juple changes

 Tuple inserted

Constraint Modifications

* You should give your constraints names
 Helps with error messages

e Used for changing constraints

name CHAR (30) CONSTRAINT namelsKey PRIMARY KEY

CONSTRAINT rightTitle
CHECK (gender = 'F' OR name not like 'Ms.%'

Constraint Modifications

* Dropping constraints

e Use ALTER table
ALTER TABLE movieStar DROP CONSTRAINT namelIsKey;

ALTER TABLE movieStar ADD CONSTRAINT
namelIsKey PRIMARY KEY (name)

Assertions

e Assertion:

A boolean valued SQL expression that must be true at
all times

e Trigger:

e Series of actions associated with certain events and
triggered by them

Assertion

* Creating assertions

CREATE ASSERTION <name> CHECK (<condition>)

 Should be true when you call it, unless the assertion is
deferred

Assertion

 Formulating assertions

 Unlike checks, assertions need to specify the relation

movieExec (name, address, cert#, netWorth)
studio (name, address, presC#

CREATE ASSERTION richPres CHECK (
(NOT EXISTS
(SELECT studio.name
FROM studio, movieExec
WHERE presC# = cert# AND netWorth<l1000000

)
) ;

Assertion

 Formulating assertions

e All studios can only produce <10000 minutes of movies

Assertion

CREATE ASSERTION sumLength CHECK
(10000 >= ALL
(SELECT SUM(length)
FROM movilies
GROUP BY studioName

)

Assertion

* Assertions are always checked when there is a change in
the database

e (Constraints for a tuple are only checked when a tuple is
updated or inserted

* Therefore, making the previous assertion a check has a
different meaning:

ALTER TABLE movies ADD CONSTRAINT
maxLength CHECK (10000 >= ALL
(SELECT SUM(length) FROM movies

GROUP BY studioName)
) ;

Assertion

 Dropping assertions

DROP ASSERTION sumLength

Triggers

A Trigger is awakened at certain events

* nsert, delete, updates to a particular relation
e A Trigger then tests a condition.

e |f condition is false, nothing more happens

e Otherwise: The action associated with trigger is
executed

Triggers

Trigger's condition and action executed either :
* state of DB before the triggering event
* state of DB after the triggering event

Condition and action can refer to both the new and the old
values

Update events can be limited to certain attribute(s)
Trigger can execute
* once for each modified tuple — row-level trigger

* once for all tuples changed — statement level trigger

Triggers

e Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
OLD ROW AS OldTuple,
NEW ROW AS NewTuple
FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
UPDATE movieExec
SET netWorth = OldTuple.netWorth
WHERE cert# = NewTuple.cert#

Triggers

Creating and naming the trigger

e Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
OLD ROW AS OldTuple,
NEW ROW AS NewTuple
FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
UPDATE movieExec
SET netWorth = OldTuple.netWorth
WHERE cert# = NewTuple.cert#

Triggers

° Examp| e: This is the Jggg:aring event:

Attribute
Table

CREATE TRIGGER nef#WorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
OLD ROW AS OldTuple,
NEW ROW AS NewTuple
FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
UPDATE movieExec
SET netWorth = OldTuple.netWorth
WHERE cert# = NewTuple.cert#

Triggers

° Example: The referencing gives names
OLD ROW and NEW ROW are

defined with the obvious meanings

CREATE TRIGGER netiérthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
OLD ROW AS OldTuple,
NEW ROW AS NewTuple
FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
UPDATE movieExec
SET netWorth = OldTuple.netWorth
WHERE cert# = NewTuple.cert#

Triggers

e Example: OLD ROW is the old value of the

tuple, NEW ROW is the new value
of the tuple

CREATE TRIGGER netiérthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
OLD ROW AS OldTuple,
NEW ROW AS NewTuple
FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
UPDATE movieExec
SET netWorth = OldTuple.netWorth
WHERE cert# = NewTuple.cert#

Triggers

° Example: Here we decide whether we want

the action to be performed once or
for each row separate

CREATE TRIGGER netWagrthTrigger
AFTER UPDATE OF nefWorth ON movieExec
REFERENCING
OLD ROW AS @1dTuple,
NEW ROW A8 NewTuple
FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
UPDATE movieExec
SET netWorth = OldTuple.netWorth
WHERE cert# = NewTuple.cert#

Triggers

e Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF gietWorth ON movieExec
REFERENCING
OLD ROW AS OldTuple,
NEW ROW AS NewTuple
FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
UPDATE movieExec
SET netWorth = OldTuple.netWorth
WHERE cert# = NewTuple.cert#

Triggers

This is the conditional action:

e Example: An SQL statements that refers to the previous

value of the tuple

CREATE TRIGGER WorthTrigger
AFTER UPDATE OE netWorth ON movieExec
REFERENCING

OLD ROW A3 OldTuple,

NEW ROW AS NewTuple

WHEN (OldTuple.netWorth > NewTuple.netWorth)
UPDATE movieExec
SET netWorth = OldTuple.netWorth
WHERE cert# = NewTuple.cert#

Triggers

e Trigger condition:
e Can use "After" or "Before"

 There is another option, "Instead”, that is used with
VIews

Triggers

e Trigger condition:
e TJriggering events can be:
e UPDATE
e INSERT
e DELETE

e OF clause is optional for updates and not possible for
INSERT and DELETE

e Because it would not make any sense

Triggers

e WHEN clause

* |s optional, but supplements the AFTER clause

Triggers

e SQL statements:

 There can be any number of SQL statements,
bracketed by BEGIN ... END

e Separated by semi-colons

Triggers

* |f the triggering event is an update, there is going to be an
old and a new value of the tuple

* We give them names in
e OLD ROW AS
* NEW ROW AS
* |f the update is a delete, we only have an old tuple:
e OLD ROW AS
* |f the update is an insert, then we only have a new tuple:

* NEW ROW AS

Triggers

e Statement level versus row level trigger
e Statement level: default or FOR EACH STATEMENT

* Executed once independent of the number of rows
affected (zero, one, many, all)

 Cannot have OLD ROW or NEW ROW but
 OLD TABLE AS oldstuff
e NEW TABLE AS newstuff
* Row level: FOR EACH ROW
e allows using OLD ROW and NEW ROW

Triggers

e Example

e Assume we want the average net worth of movie
executives to drop below $500,000.—

e Could use an assertion, but that would just result in our
inability to insert low net worth executives

e But could have several statements that allow us to
insert, delete, and change net worth

* \We then want to refuse such a block statement only
if afterwards the condition is not true

Triggers

e Example (continued):

 We need to write one trigger for all modifications

 But we only want to check after we made our

modifications (and can still roll back to the previous
state)

Triggers

CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING
OLD TABLE AS oldStuff
NEW TABLE AS newStuff
FOR EACH STATEMENT
WHEN (500000 > SELECT (AVG (networth) FROM MovieExec;)
BEGIN
DELETE FROM MovieExec
WHERE (name, address, cert%, networth) IN newStuff;
INSERT INTO MovieExec
(SELECT * FROM oldStuff);
END

Triggers

After means check after
statement has executed

CREATE TRIGGER AvgNetWorthTrlgger
AFTER UPDATE OF netwois : i This is the version for update
REFERENCING

OLD TABLE AS oldStuftf

NEW TABLE AS newStuff
FOR EACH STATEMENT

WHEN (500000 > SELECT (AVG (networth) FROM MovieExec;)
BEGIN

DELETE FROM MovieExec

WHERE (name, address, cert%, networth) IN newStuff;

INSERT INTO MovieExec

(SELECT * FROM oldStuff);

END

Triggers

This is the version for
update.

CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec [l e=riiale =izl
REFERENCING level trigger, so we give
OLD TABLE AS oldStuff names to the new and the
NEW TABLE AS newStuff DICHIEDIC CONIENIS
FOR EACH STATEMENT
WHEN (500000 > SELECT (AVG (networth) FROM MovieExec;)
BEGIN
DELETE FROM MovieExec
WHERE (name, address, cert%, networth) IN newStuff;
INSERT INTO MovieExec
(SELECT * FROM oldStuff);

END

Triggers

When checks whether the

condition is violated

CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING

OLD TABLE AS oldStuff

NEW TABLE AS newStuff
FOR EACH STATEMENT

WHEN (500000 > SELECT (AVG (networth) FROM MovieExec;)
BEGIN

DELETE FROM MovieExec

WHERE (name, address, cert%, networth) IN newStuff;

INSERT INTO MovieExec

(SELECT * FROM oldStuff);

END

Triggers

two sqgl statements,
CREATE TRIGGER AvgNetWorthTrigger bracketed by BEGIN and

AFTER UPDATE OF networth ON movieExec =)0
REFERENCING

OLD TABLE AS oldStuff

NEW TABLE AS newStuff
FOR EACH STATEMENT

WHEN (500000 ECT (AVG (networth) FROM MovieExec;)
BEGIN

DELETE FROM MovieExec

WHERE (name, address, cert%, networth) IN newStuff;

INSERT INTO MovieExec

(SELECT * FROM oldStuff);

In which case we execute

END

Triggers

all contents from MovieExec
CREATE TRIGGER AvgNetWorthTrigger as it stands now, i.e. after the

AFTER UPDATE OF networth ON movieExec [leski:
REFERENCING

OLD TABLE AS oldStuff

NEW TABLE AS newStuff
FOR EACH STATEMENT

WHEN (500000 > SELECT (AWG (networth) FROM MovieExec;)
BEGIN

DELETE FROM MovieExec

WHERE (name, address, cert%, networth) IN newStuff;

INSERT INTO MovieExec

(SELECT * FROM oldStuff);

The first statement deletes

END

Triggers

The second statement then
creates

CREATE TRIGGER AvgNetWorthTrigger
AFTER UPDATE OF networth ON movieExec
REFERENCING

OLD TABLE AS oldStuff

NEW TABLE AS newStuff
FOR EACH STATEMENT

WHEN (500000 > SELECT (AVG (n orth) FROM MovieExec;)
BEGIN

DELETE FROM MovieExega

WHERE (name, address, cert%, networth) IN newStuff;

INSERT INTO MovieExec

(SELECT * FROM oldStuff);

END

Triggers

e A common use of triggers is to fix up inserted values

e Example:

® Movies (title, vyear, length, genre,
studioName, producerC#)

 Write a trigger that changes a year value of NULL to
the current year

 YEAR(CURDATE)

Triggers

CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
NEW ROW AS newRow
NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS5 NULL
UPDATE newStuff SET year = YEAR (CURDATE) ;

Triggers

e \We need to be able to refer to
e an attribute of the inserted row

* the table in which we want to change a value

CREATE TRIGGER fixYearToCurrentYear
BEFORE INSERT ON Movies
REFERENCING
NEW ROW AS newRow
NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS5 NULL
UPDATE newStuff SET year = YEAR (CURDATE) ;

Triggers

We check before we

actually do the update

CREATE TRIGGER
BEFORE INSERT ON Movies
REFERENCING
NEW ROW AS newRow
NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR (CURDATE) ;

oCurrentYear

Triggers

We have to refer to the row
AND to the table

CREATE TRIGGER fixYearToC 9 Year
BEFORE INSERT ON Mov.ise
REFERENCING

NEW ROW AS newRow
NEW TABLE AS newStuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR (CURDATE) ;

Triggers

This is a row level trigger,
not a statement level trigger

BEFORE INSERT ON Movies

REFERENCING
NEW ROW AS newyROw
NEW TABLE _AS newStuff

FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR (CURDATE) ;

Triggers

The when clause refers to
the inserted row BEFORE it

is inserted

CREATE TRIGGER fixYearToCurrentYeg
BEFORE INSERT ON Movies
REFERENCING
NEW ROW AS newRow
NEW TABLE AS newSTuff
FOR EACH ROW
WHEN newRow.year IS NULL
UPDATE newStuff SET year = YEAR (CURDATE) ;

Triggers

We check before we
actually do the update

CREATE TRIGGER fixYearToCurrentYe
BEFORE INSERT ON Movies
REFERENCING
NEW ROW AS newRow
NEW TABLE AS newStyrf
FOR EACH ROW
WHEN newRow.year 15 NULL
UPDATE newStuff SET year = YEAR (CURDATE) ;

Triggers

We then change with 'SET"
the value of the year.

This is SQL to change a
variable

CREATE TRIGGER fixYearToCurrentYea
BEFORE INSERT ON Movies
REFERENCING
NEW ROW AS newRow
NEW TABLE AS newStu
FOR EACH ROW
WHEN newRow.year IS5 NULL
UPDATE newStuff SET year = YEAR (CURDATE) ;

Triggers

MySQL peculiarities:

MySQL does NOT have referencing.
Instead use NEW and OLD

Triggers

Problems

* |n the employee database, create a table employees_audit

®* employees audit(rid, emp no, last name,
change date, action)

e rid: autoincrement

e emp_no non-null integer

e |last_name non-null VARCHAR(50)

e changedat a datetime value with default NULL

e action a varchar value with default NULL

Triggers

e Problem (continued)

 Basically, we create a record whenever we change
something in the employees table

e HINT: If you want to avoid loading the employees table
afterwards, you should disable automatic commits.

e Do a commit before you do anything

e And a roll-back afterwards

Triggers

e Problem (continued)

o After creating the table, create a trigger auditinsert that
on each insert into the employees table creates an
audit entry in employees_audit

* You do this before a row has been inserted
* You do this for each row

* You insert into the employees_audit table
e Use SET syntax

e and use NOW() for the time stamp

Triggers

* Create a fictitious employee with high emp_no
e Change something about this employee with an update

 Check what happened to employee_audit

Triggers

e Solution

CREATE
TRIGGER Dbefore employee update
BEFORE UPDATE ON employees
FOR EACH ROW
INSERT INTO employee audilt

SET action = 'update' ,
employeeNumber = OLD.emp no,
lastname = OLD.last name ,

changedate = NOW() ;

Triggers

 Problem (continued)

INSERT INTO employees VALUES (500000, '1980-12-01"',
'Friedrich', 'Chopin', 'M', '2020-03-01");

* You can check that this does not trigger anything, since
we are not updating

Triggers

UPDATE employees
SET

hire date = '2020-02-01"
WHERE

emp no = 500000;

Triggers

* This should have triggered an action.

 Check your result panel (below) in the MySQL workbench
to insure that you did not have a typo in your trigger

* |f you had one, just drop the trigger and redefine it.
e DROP TRIGGER before_employee_update;

* Now you can check the audit table:

id employeeNumb... lastname changedat action

1 500000 Chopin 2020-03-23 20:58:48 update
[y [y HULL HULL HULL

MySQL Triggers

e |f a trigger has more than a single statement:

* you need to change the delimiter away from the
standard semi-colon to something else and back

DELIMITER $5

DELIMITER ;

MySQL Triggers

e |f your trigger has multiple statements:
e Use the BEGIN ... END construct

* Within the construct, you can then use the standard
delimiter

MySQL Triggers

* Recall that instead of WHEN, MySQL has a different
construct:

e [F ... THEN ... ELSEIF ... THEN ... END IF;
e [F ... THEN ... END IF;

Triggers

* |n the employees database:
e Create a trigger that checks if the hire date is NULL.
e |f this is true, set this date to the current date
 The current date is given by NOW()

* Also, instead of referencing you need to use OLD or NEW

MySQL Triggers

e Solution

DELIMITER S$S

CREATE TRIGGER hireDate

BEFORE INSERT ON employees

FOR EACH ROW

BEGIN
IF NEW.hire_date IS NULL THEN

SET NEW.hire date = NOW();

END IF;

END 5

DELIMITER ;

Triggers

* And now you do a rollback or you reload the employees
database table

