
Consistency 
Challenge



Consistency in File Systems
• File systems store metadata and user data


• Present file in a hierarchical directory structure


Unix File System Example



Consistency in File Systems
• Unix stores location information in inode tables



Consistency in File Systems
• File systems need to survive crashes


• After a crash, need to be able to recover to a consistent 
state



Consistency in File System 
Example

• Move an existing file from one directory to another


• We assume that each directory contains information 
about its files

root

A B C

D

File

File

hard link

hard link



Consistency in File System 
Example

• Directories are files with a list of names and inodes


• In reality, there are other links such as to parent 
directory

root

A B C

D

File

File

hard link

hard link



Consistency in File System 
Example

• Need to change two directories at the same time

root

A B C

D

File

File

hard link

hard link



Consistency in File System 
Example

• Changes to D — Crash — Changes to A: File is lost but 
for hard link

root

A B C

D

File

hard link



Consistency in File System 
Example

• Changes to A made — Crash — Changes to D not made:


• File is in two directories

root

A B C

D

File

File

hard link

hard link



Consistency in File System 
Example

• To maintain consistency, we can use extensive copying


• The red link is valid, all changes are made in the copy

root

A B C

D

File

hard link

root copy

A copy B copy

D copy

pointer to root



Consistency in File System 
Example

• When the new copy is built, can switch to the other link


• Garbage-collect all data

root 

A B C

D

File

hard link

root

A B

D

pointer to root



Consistency in File System 
Example

• File system is always in a good state because the switch, 
updating the pointer to root, is atomic

C

File

hard link

root

A B

D

pointer to root



Consistency in File Systems
• Keeping the file system always in a consistent state is too 

expensive.


• Alternative: Fix after a crash


• Simple model: just try to make sense of what is to be 
found


• Use a journal



Consistency in File Systems
• Journaling:


• Before making changes, commit them to the journal


• Make the changes


• Write completion into the journal


• In case of crash, can redo the unfinished operations in the 
journal



Consistency in File Systems
• State of the journal without crash

root

A B C

D

File

File

hard link

hard link

Want to 
Change A to A’
Change D to D’

Changed
A to A’

Changed
D to D’… …



Consistency in File Systems
• Crash before writing the first block to the journal


• No problem, system remains in the old state


• Crash before changing either A or D


• Unfinished journal entry means that both changes are 
initiated


• Crash after changing one but not the other


• No problem, we change both of them


• Changes from A to A’ and D to D’ are idempotent:


• Doing the same operation twice is no error



Consistency in File Systems
• Crash after changes but before entry is made into journal


• No problem, we just redo the operations again 


• Crash after change entries is made:


• System stays in new state


• We can mark journal entries as old or remove them to 
ensure that we do not spend too much time redoing 
operations in the journal



Consistency in Distributed 
Systems


