
Data Models for the
Cloud

Relational Model
Shortcomings

• Greater Scalability

• High write throughput / very large datasets

• Independence of few vendors — Move towards Open
Source

• Need for different query operations

• Restrictiveness of relational schemas

Alternatives to Relational
Schemes: XML

• Data is often structured hierarchically
Invoice = {
 date : "2008-05-24"
 invoiceNumber : 421

 InvoiceItems : {
 Item : {
 description : "Wool Paddock Shet Ret Double Bound Yellow 4'0"
 quantity : 1
 unitPrice : 105.00
 }
 Item : {
 description : "Wool Race Roller and Breastplate Red Double"
 quantity : 1
 unitPrice : 75.00
 }
 Item : {
 description : "Paddock Jacket Red Size Medium Inc Embroidery"
 quantity : 2
 unitPrice : 67.50
 }
 }
}

Alternatives to Relational
Schemes: XML

• Example as a relational scheme

• Invoice_Items(invoice.id, description,
quantity, unit_price)

• Invoices(date, invoice.id)

Alternatives to Relational
Schemes: XML

• As an XML document
<invoice>

 <number>421</number>
 <date>2008-05-24</date>
 <items>
 <item>
 <description>Wool Paddock Shet Ret Double Bound Yellow 4'0"</description>
 <quantity>1</quantity>
 <unitPrice>105.00</unitPrice>
 </item>
 <item>
 <description>Wool Race Roller and Breastplate Red Double</description>
 <quantity>1</quantity>
 <unitPrice>75.00</unitPrice>
 </item>
 <item>
 <description>Paddock Jacket Red Size Medium Inc Embroidery</description>
 <quantity>2</quantity>
 <unitPrice>67.50</unitPrice>
 </item>
 </items>
</invoice>

Alternatives to Relational
Schemes: XML

• Advantage of XML

• Faster to scan

• Less need for joins

• Disadvantages of XML

• Each record contains the full or an abbreviated scheme

Alternatives to Relational
Schemes: JSON

• JSON — JavaScript Object Notation

• Human-readable

• Organized as key-value pairs

Alternatives to Relational
Schemes: JSON

• JSON record example
{
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 27,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 },
 {
 "type": "mobile",
 "number": "123 456-7890"
 }
],
 "children": [],
 "spouse": null
}

Alternatives to Relational
Schemes: JSON

• JSON can use a schema (type definition)

• JSON was first used for data transmission as a data
serialization format

Alternatives to Relational
Schemes: JSON

• Many-to-One and Many-to-Many Relationships

• Modeled by the same value for the same key

• Problem: Need to standardize / internationalize
these values

• Using id-s instead of plain text to avoid problems

• Table of id-s reintroduce a relational scheme through
a backdoor

Alternatives to Relational
Schemes: JSON

• Resumé

• Users present people

• People have jobs, education, and recommenders

• But they share jobs, companies, degrees, schools,
recommenders

• Should they stay text strings or become entities?

• Latter allows to add information to all resumés

• If recommenders get a photo, then all resumés should be
updated with this photo, so better to make recommenders
entities

Alternatives to Relational
Schemes: JSON

positions

user 1 education

recommendation

job 1

job 2

job_title

job_title

rec 1

organization 1

organization 2

organization 3

start
end

start
end

school 1

school 2

school 3

positions

job 1

job 2

job_title

job_title

user 2education

school 3

start
end

start
end

start
end

• Data has a tendency to become less-join free

Document Databases
• Records are documents

• Encode in

• XML

• YAML

• JSON

• BSON (Mongo DB)

• CRUD operations: create, read, update, delete

Document Databases
• Enforcing schema

• Most document databases do not enforce schema

• —> “Schemaless”

• In reality: “Schema on Read”

• RDBMS would then use “Schema on Write”

• Allows schema updates in simple form

Document Databases
• Schema on Read:

• Advantages:

• Data might come from external sources

• Disadvantages:

• No data checking

Document Databases
• Document database support

• Most commercial database systems now support XML
databases

Query Languages
• Documents lend themselves to object-oriented querying

• Imperative code

• SQL is declarative:

• Programmer explains a solution

• System figures out the best way to find the solution

• Use declarative query languages for document databases

Query Languages
• Map-Reduce (neither declarative nor imperative):

• Consists of only two pieces of code

• Mapping: Selecting from Documents

• Reducing: Take selection elements and operate on
them

Alternatives to Relational
Schemes: Graph Models

• Graphs consists of vertices and edges

• Example:

• Social graphs: vertices are people and edges are
relationships such “knows”

• Web graph: vertices are pages and edges are links

• Road networks: vertices are places and edges are
connections

Alternatives to Relational
Schemes: Graph Models

• Relational Database hides semantic relationships

Alternatives to Relational
Schemes: Graph Models

• Document model hides semantic relationships

Alternatives to Relational
Schemes: Graph Models

• Some property values are really
references to foreign aggregates

• Aggregate’s identifier is a foreign
key

• Relationships between them are
not explicitly accessible

• Joining aggregates becomes
expensive

Alternatives to Relational
Schemes: Graph Models

• Relational Database

• Some queries are simple:

SELECT p1.Person  
FROM Person p1 JOIN PersonFriend
ON PersonFriend.FriendID = p1.ID JOIN Person p2
ON PersonFriend.PersonID = p2.ID WHERE p2.Person = 'Bob'

Alternatives to Relational
Schemes: Graph Models

• Relational Database

• Some queries others are more involved: Friends of Bob

SELECT p1.Person  
FROM Person p1 JOIN PersonFriend
 ON PersonFriend.PersonID = p1.ID JOIN Person p2
 ON PersonFriend.FriendID = p2.ID
WHERE p2.Person = 'Bob'

Alternatives to Relational
Schemes: Graph Models

• Relational Database

• Some queries others are difficult: Alice’s friends of friends

SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND FROM
PersonFriend pf1 JOIN Person p1
ON pf1.PersonID = p1.ID JOIN PersonFriend pf2
ON pf2.PersonID = pf1.FriendID JOIN Person p2
ON pf2.FriendID = p2.ID  
WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID

Alternatives to Relational
Schemes: Graph Models

• Property graph model by Neon

• Each vertex consists of

• A unique identifier

• A set of outgoing edges

• A set of incoming edges

• A collection of properties — key-value pairs

• Each edge consists of

• A unique identifier

• The tail vertex

• The head vertex

• A label to describe the relationship

• A collection of properties — key-value pairs

Alternatives to Relational
Schemes: Graph Models

Alternatives to Relational
Schemes: Graph Models

• Order history as a property graph

Alternatives to Relational
Schemes: Graph Models

• Processing queries in Neo4j

• Use Cypher (from “The matrix”)

• Can describe a path

 (emil)<-[:KNOWS]-(jim)-[:KNOWS]->(ian)-[:KNOWS]->(emil)

Alternatives to Relational
Schemes: Graph Models

(emil:Person {name:'Emil'})
 <-[:KNOWS]-(jim:Person {name:'Jim'})
 -[:KNOWS]->(ian:Person {name:'Ian'})
 -[:KNOWS]->(emil)

Alternatives to Relational
Schemes: Graph Models

• Finding the mutual friends of Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-
[:KNOWS]->(c)
RETURN b, c

Alternatives to Relational
Schemes: Graph Models

• Triple Stores

• Information is stored as (subject, predicate, object)

• Subjects correspond to vertices

• Objects are

• A value in a primitive data type — (jim : age : 64)

• Another vertex — (jim : friend_of : thomas)

Alternatives to Relational
Schemes: Graph Models

@prefix : </example>
_:lucy a :Person
_:lucy :name “Lucy”
_:lucy :born_in _:idaho
_:idaho a :Location
_:idaho :name “Idaho”
_:idaho :type “State”
_:idaho :within _:usa

Alternatives to Relational
Schemes: Graph Models

• Triple stores are the language of the semantic web

• Semantic web:

• Machine readable description of type of links

• e.g. image, text, …

• Creates web of data — a database of everything

• Stored in Resource Description Framework (RDF)

• SPARQL — query language for triple stores

